



UNIVERSITÀ DEGLI STUDI DI TRIESTE Dipartimento di Fisica Department of Physics



# Breast CT with Synchrotron Radiation: Dosimetric Approach

Christian FEDON - SYRMA-CT collaboration

Università degli Studi di Trieste – Dipartimento di Fisica INFN – Trieste

# **SYRMA-CT Project**

The aim is to realize the first clinical study of Breast Computed Tomography with Synchrotron Radiation.

The project involved several institutions:



#### **ELETTRA Synchrotron**

#### Single Photon Counting Detector

# State of the art for CT reconstruction algorithms







#### Facility upgrade

#### Dosimetric upgrade



# **Characteristics of Synchrotron Radiation**

- High x-ray intensity on a broad energy (10 40 keV)
  Tunable monochromatic beam
- Laminar beam geometry
  The images are acquired by scanning the object
- Small source size and large source-tosample distance
  Free space propagation phase imaging







# **Dosimetric Quantities**

The Breast-CT combines two techniques

 $\begin{array}{l} \textbf{Mammography}\\ \text{The key quantity is the}\\ \textbf{Mean Glandular Dose (MGD)}\\ MGD = DgN \cdot ESAK \end{array}$ 



**Monte Carlo Simulation** 

Computed Tomography Computer Tomography Dose Index (CTDI)





**Useful for characterization** 

## Monte Carlo Code

A specific Monte Carlo code has been developed to estimate the DgN coefficients using **GEANT4** 

### The dose was calculated as follows:



 $MGD = \frac{E_g \cdot G_{factor}}{mass \cdot f_g}$   $DgN = \frac{MGD}{ESAK}$ 



# Literature Validation

### A validation of the code was performed against published works

### Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data

John M. Boone<sup>a)</sup>

Department of Radiology, University of California, Davis, Sacramento, California 95817

(Received 1 November 2001; accepted for publication 28 February 2002; published 19 April 2002)

#### **Cone Beam Irradiation field Semi-Cylindrical Breast shape**



#### A comprehensive analysis of $\text{DgN}_{\text{CT}}$ coefficients for pendant-geometry cone-beam breast computed tomography

#### J. M. Boone<sup>a)</sup>

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory and Department of Biomedical Engineering, Sacramento, California 95817

N. Shah

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory, Sacramento, California 95817

T. R. Nelson Department of Radiology, University of California, San Diego, California 92037

(Received 21 July 2003; revised 26 September 2003; accepted for publication 4 November 2003; published 14 January 2004)

#### **Cylindrical Breast shape**

Radiation dose in breast CT imaging with monochromatic x-rays: simulation study of the influence of energy, composition and thickness

#### A Mittone $^{1,2}\mbox{,}$ A Bravin $^3$ and P Coan $^{1,2}$

<sup>1</sup> Department of Physics, Ludwig Maximilians University, Garching D-85748, Germany

<sup>2</sup> Department of Clinical Radiology, Ludwig Maximilians University, Munich D-81377, Germany

<sup>3</sup> European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France

E-mail: alberto.mittone@physik.uni-muenchen.de

Received 5 October 2013, revised 12 January 2014 Accepted for publication 10 March 2014 Published 8 April 2014

#### Energy range $\rightarrow$ 8-50 keV



<sup>4</sup> DgN(E) from Boone 2002 (mGy/R)



### **Excellent agreement with previous literature**

10

# **Experimental Validation CTDI**<sub>w</sub> was used for experimental validation $CTDI_w = \frac{1}{3}CTDI_{100,center} + \frac{2}{3}CTDI_{100,peripheral}$











Closed symbols for **EXPERIMENTAL DATA** ( $\sigma = 5\%$ ) Open symbols for **SIMULATED DATA** (COV<1%)

#### Good agreement with experimental measurements

# **SYRMA-CT Dosimetry**

# The breast will be partially irradiated: a height of 30 mm is taken into account





Case A

Case **B** 

- Energy in the whole glandular part
- Mass irradiated volume

$$MGD_t = \frac{E_g}{m_g}$$

- Energy in the irradiated volume
- Mass irradiated volume

$$MGD_v = \frac{e_g}{m_g}$$

To evaluate the energy deposit in the region next to the irradiated slice, the beam height was increased





$$MGD_t = \frac{E_g}{m_g}$$

$$MGD_v = \frac{e_g}{m_g}$$

$$MGD = \frac{E_g}{M_g}$$

Irradiating 30 mm there is a mean difference of 28%

## Conclusions

The study analyzed the peculiar irradiation mode of breast-CT with synchrotron radiation

Two parameters are found to be the optimal dosimetric quantities for the breast-CT exam

The study will be the basis for the dosimetry protocol of the clinical study