

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

"Performance assessment of the Albira tri-modal pre-clinical SPECT system"

Chiara Romanó

Medical Radiation Physics/Radiation Protection department (UMM) Science and high technology department (Insubria University)

Outline

Medizinische Fakultät Mannheim der Universität Heidelberg Universitätsklinikum Mannheim

Universitätsklinikum Mannheim

Introduction: Gamma Camera

[S. R. Cherry et al. Physics in nuclear Medicine. Elsevier, fourth edition, 2012]

A SPECT system [www.healthcare.siemens.com].

A brain SPECT image [S. R. Cherry et al. *Physics in nuclear Medicine*. Elsevier, fourth edition, 2012].

Chiara Romanó I Slide 4 I 24/09/2015

der Universität Heidelberg Universitätsklinikum Mannheim

Medizinische Fakultät Mannheim

Motivation

Commissioning of the Albira tri-modal pre-clinical tomograph.

Accuracy of the obtained data.

<u>Comparison</u> between different devices.

Prerequisite for quantitative measurement of small animal radio-pharmacokinetics.

Medizinische Fakultät Mannheim der Universität Heidelberg

Chiara Romanó I Slide 5 I 24/09/2015

Aim: evaluation of the following parameters

Sensitivity	The number of <u>counts per second (cps)</u> detected for a given amount of activity.					
Count rate linearity	The response of the device in terms of <i>cps</i> plotted as a function of the injected activity.					
Spatial resolution	Measurement of the smallest detail that an image allows to distinguish.					
Partial-volume Effect (PVE) and Recovery Coefficient (RC)	Difference between the pixel intensities and the true radioactivity.					

γ Energy	0.141 MeV
Half-life	6.02 hours
Branching ratio	89.1 %

Chiara Romanó I Slide 6 I 24/09/2015

Medizinische Fakultät Mannheim der Universität Heidelberg

Material: SPECT sub-system

FOV: area under study. Voxel: the three dimensional array of the image elements.

Medizinische Fakultät Mannheim der Universität Heidelberg

Material: phantoms

National Electrical Manufacturers Association (NEMA) NU 4-2008 image quality phantom

[NEMA NU 4-2008 image guality phantom].

UMM

UNIVERSITÄTSMEDIZIN MANNHEIM

Point source phantom developed in-house

> Source dimensions $\emptyset_x = (1.2 \pm 0.2) mm$ $\emptyset_{v} = (1.2 \pm 0.2) \, mm$ $z = (2.0 \pm 0.2) mm$

[Point source phantom developed in-house].

der Universität Heidelberg

Parameter	Method	Phantom	
Sensitivity	Sensitivity = $rac{ extsf{cps-background}}{ extsf{A} \ [extsf{MBq}]}$	NEMAPoint source	
Count rate linearity	cps vs activity	• NEMA	
Spatial Resolution	FWHM: 3D fit function	Point source	
Recovery Coefficient	RC = $\frac{apparent\ activity}{uniform\ region\ activity}$	• NEMA	

Medizinische Fakultät Mannheim der Universität Heidelberg

Results

Chiara Romanó I Slide 10 I 24/09/2015

Medizinische Fakultät Mannheim der Universität Heidelberg

Results

Count rate linearity

SPH

MPH

	SPH	МРН		
s (cps/MBq)	14.96 ± 0.07	57.74 ± 1.02		
B (cps)	12.8 ± 3.4	125 ± 49		

Chiara Romanó I Slide 11 I 24/09/2015

y	=	S	x	+	B

s system sensitivity *B* background cps

Spatial resolution

SPH (mm)				MPH (mm)	
x	У	z	x	У	z
2.82 ± 0.01	2.82 ± 0.01	3.08 ± 0.01	2.57 ± 0.01	2.64 ± 0.01	2.55 ± 0.01

The MPH collimation system presents a better spatial resolution.

Chiara Romanó I Slide 12 I 24/09/2015

- RCs lower than 100 %.
- Convergence at 12 iterations.
- The larger the diameter the higher the RC since the smaller the PVE.

Chiara Romanó I Slide 13 I 24/09/2015

Medizinische Fakultät Mannheim der Universität Heidelberg

Conclusions

- The sensitivity to a point source is in the same range of other investigated studies.
- The sensitivity of the system is about five times larger for the MPH with respect to the SPH, as expected.
- The spatial resolution for the MPH results better than the spatial resolution evaluated for the SPH collimation system.
- Quantitative data are obtained by reconstructing the image with 12 iterations.
 2 iterations are enough for a visual image interpretation.
- New radiotracers will be tested and validated.

Back up

Chiara Romanó I Slide 15 I 24/09/2015

Medizinische Fakultät Mannheim der Universität Heidelberg

Count rate linearity

SPH

 15.68 ± 0.11

 0.38 ± 0.12

 $(4.9 \pm 0.7) \cdot 10^{-4}$

$$y = s \cdot (x+b) \cdot e^{-(x+b) \cdot \tau}$$

s system sensitivity b background activity τ constant related to the deadtime

S

(cps/MBq)

b

(MBq)

τ

(1/MBq)

MPH

69.18 ± 1.00

 0.25 ± 0.23

 $(19.1 \pm 1.5) \cdot 10^{-4}$

Medizinische Fakultät Mannheim der Universität Heidelberg

Spatial resolution

Three dimensional fit

Gaussian function convolved with the source dimensions

$$f_{1}(x, y, z) = f_{1}(x, y, z) = A \cdot \left(erf\left(\frac{x - (b_{x} - r_{x})}{\sqrt{2} \cdot \sigma_{x}}\right) - erf\left(\frac{x - (b_{x} + r_{x})}{\sqrt{2} \cdot \sigma_{y}}\right) \right) \cdot \left(erf\left(\frac{y - (b_{y} - r_{y})}{\sqrt{2} \cdot \sigma_{y}}\right) - erf\left(\frac{y - (b_{y} + r_{y})}{\sqrt{2} \cdot \sigma_{y}}\right) \right) \cdot \left(erf\left(\frac{z - (b_{z} - r_{z})}{\sqrt{2} \cdot \sigma_{z}}\right) - erf\left(\frac{z - (b_{z} + r_{z})}{\sqrt{2} \cdot \sigma_{z}}\right) \right) = erf\left(\frac{z - (b_{z} - r_{z})}{\sqrt{2} \cdot \sigma_{z}}\right) - erf\left(\frac{z - (b_{z} - r_{z}}\right) - erf\left(\frac{z - (b_{z} - r_{z})}{\sqrt{2} \cdot \sigma_{z}}\right) - erf\left(\frac{z - (b_{z} - r_{z}$$

Medizinische Fakultät Mannheim der Universität Heidelberg

