Accidental Degeneracy in the Quantum Tridimensional Isotropic Harmonic Oscillator: a Clarification via Ladder Operators

STEFANO PATRI'

Department of
METHODS AND MODELS FOR TERRITORY, ECONOMICS AND FINANCE
Faculty of ECONOMICS - "SAPIENZA" University of Rome
101° Congress of the ITALIAN PHYSICAL SOCIETY
September 21-25, 2015
ROME

Contents

(1) THE EIGENVALUE PROBLEM

- Solution in Cartesian Coordinates
- Solution in Spherical Polar Coordinates
(2) TOTAL DEGENERACY
- Degeneracy and spherical harmonics
- Eigenfunctions for $n=1$ and $n=2$
(3) LADDER OPERATORS
- Quantum shift theorem

4. ACCIDENTAL DEGENERACY

- Second conservation law
- Ladder operator for the accidental degeneracy

Schrödinger equation

The Schrödinger equation of the quantum Tridimensional Isotropic Harmonic Oscillator (TIHO) is

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{m \omega^{2} \boldsymbol{r}^{2}}{2}\right] \Psi(x, y, z)=E \Psi(x, y, z) \tag{1}
\end{equation*}
$$

If we rewrite the eigenfunctions in the separated form $\psi(x, y, z)=\phi(x) \eta(y) \chi(z)$, the equation (1) becomes

Separated Schrödinger equation

$$
\begin{aligned}
& \frac{1}{\phi(x)}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{m \omega^{2} x^{2}}{2}\right] \phi(x)+ \\
+ & \frac{1}{\eta(y)}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d y^{2}}+\frac{m \omega^{2} y^{2}}{2}\right] \eta(y)+ \\
+ & \frac{1}{\chi(z)}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d z^{2}}+\frac{m \omega^{2} z^{2}}{2}\right] \chi(z)=E
\end{aligned}
$$

that is

$$
\frac{H_{x} \phi(x)}{\phi(x)}+\frac{H_{y} \eta(y)}{\eta(y)}+\frac{H_{z} \chi(z)}{\chi(z)}=E .
$$

Separated Schrödinger equation

In the last equation each term in the left hand side has to be a constant because the terms depend on the different variables x, y, z and their sum is the constant E. Then we can write

$$
\frac{H_{x} \phi(x)}{\phi(x)}=E_{x}, \quad \frac{H_{y} \eta(y)}{\eta(y)}=E_{y}, \quad \frac{H_{z} \chi(z)}{\chi(z)}=E_{z}
$$

which are three eigenvalue problems of unidimensional harmonic oscillator.

Eigenvalues and eigenfunctions

We then obtain the eigenvalues of the quantum TIHO

$$
E_{n}=\hbar \omega\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)=\hbar \omega\left(n+\frac{3}{2}\right)
$$

with $n_{x}+n_{y}+n_{z}=n$, and the corresponding eigenfunctions denoted by

$$
\Psi_{n}(x, y, z)=\phi_{n_{x}}(x) \eta_{n_{y}}(y) \chi_{n_{z}}(z) \quad \text { or } \quad\left|\Psi_{n}\right\rangle=\left|n_{x}, n_{y}, n_{z}\right\rangle
$$

Polar Schrödinger Equation

If we write the Schrödinger equation (1)

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{m \omega^{2} \boldsymbol{r}^{2}}{2}\right] \Psi(x, y, z)=E \Psi(x, y, z)
$$

in spherical polar coordinates and separate the eigenfunction as $\Psi(x, y, z) \equiv R(r) Y_{l, m}(\theta, \varphi)$, the radial equation for the function $R(r) \equiv R_{n, l}(r)$ is

$$
\frac{d^{2} R(r)}{d r^{2}}+\frac{2}{r} \frac{d R(r)}{d r}+\left[\frac{2 m E_{n}}{\hbar^{2}}-\frac{m^{2} \omega^{2} r^{2}}{\hbar^{2}}-\frac{I(I+1)}{r^{2}}\right] R(r)=0
$$

Polar eigenfunctions and Laguerre polynomials

If we solve the radial equation by power series expansion, we obtain the same eigenvalues

$$
E_{n}=\hbar \omega\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)=\hbar \omega\left(n+\frac{3}{2}\right)
$$

and the eigenfunctions in polar coordinates

$$
\psi_{n l m}(\boldsymbol{r})=R_{n l}(r) Y_{l m}(\theta, \phi)=N r^{\prime} e^{-\alpha r^{2} / 2} \mathcal{L}_{n / 2-l / 2}^{(1+1 / 2)}\left(\alpha r^{2}\right) Y_{l m}(\theta, \phi),
$$

Parity of the quantum numbers

where

1) the nonnegative quantum numbers n, I have the same parity, with $I \leq n$;
2) $\mathcal{L}_{s}^{(a)}(x)$ denotes the associated Laguerre polynomials whose expression for the real parameter $a>-1$ and the nonnegative integer parameter s is

$$
\mathcal{L}_{s}^{(a)}(x)=\frac{e^{x}}{x^{a}} \frac{d^{s}}{d x^{s}}\left(x^{s+a} e^{-x}\right)
$$

Dimension of the eigenspace of E_{n}

It is worth noting that the total degeneracy d_{n} of an eigenvalue E_{n} is

$$
d_{n}=\frac{(n+1)(n+2)}{2}
$$

and that the number d_{n} is coincident with the total number \mathcal{N} of spherical harmonics corresponding to all quantum numbers / having the same parity of n, with $I \leq n$.

Comparison with the spherical harmonics

In fact, for even $n=2 m$ we have $I=2 k$ and then

$$
\mathcal{N}=\sum_{k=0}^{m}[2(2 k)+1]=2 m^{2}+3 m+1=\frac{(2 m+1)(2 m+2)}{2}=d_{2 m}
$$

while for odd $n=2 m+1$ we have $I=2 k+1$ and then

$$
\mathcal{N}=\sum_{k=0}^{m}[2(2 k+1)+1]=2 m^{2}+5 m+3=\frac{(2 m+2)(2 m+3)}{2}=d_{2 m+1}
$$

Degeneracy: example with $n=1$

For $n=1$ we have the $d_{1}=(1+1)(1+2) / 2=3$ eigenfunctions denoted by $\left|n_{x}, n_{y}, n_{z}\right\rangle$ given by

$$
|1,0,0\rangle, \quad|0,1,0\rangle, \quad|0,0,1\rangle
$$

or the three eigenfunctions denoted by $\left|\psi_{n, l, m}\right\rangle$ given by

$$
\left|\psi_{1,1,-1}\right\rangle, \quad\left|\psi_{1,1,0}\right\rangle, \quad\left|\psi_{1,1,1}\right\rangle,
$$

corresponding to the same eigenvalue

$$
E_{1}=\frac{5}{2} \hbar \omega
$$

SOCIETA ITALIANA DIFISICA

Degeneracy: example with $n=2$

For $n=1$ we have the $d_{2}=(2+1)(2+2) / 2=6$ eigenfunctions denoted by $\left|n_{x}, n_{y}, n_{z}\right\rangle$ given by

$$
|2,0,0\rangle, \quad|0,2,0\rangle, \quad|0,0,2\rangle, \quad|1,1,0\rangle, \quad|1,0,1\rangle, \quad|0,1,1\rangle,
$$

or the six eigenfunctions denoted by $\left|\psi_{n, l, m}\right\rangle$ given by

$$
\left|\psi_{2,2,2}\right\rangle, \quad\left|\psi_{2,2,1}\right\rangle, \quad\left|\psi_{2,2,0}\right\rangle, \quad\left|\psi_{2,2,-1}\right\rangle, \quad\left|\psi_{2,2,-2}\right\rangle, \quad\left|\psi_{2,0,0}\right\rangle,
$$

corresponding to the same eigenvalue

$$
E_{2}=\frac{7}{2} \hbar \omega
$$

Natural and accidental degeneracy

From the eigenfunctions $\left|\psi_{n, l, m}\right\rangle$ corresponding to the eigenvalue E_{2} we see that the energy E_{2} is independent from both the quantum numbers I, m.

The independence from the quantum number m is called natural degeneracy and is due, as it is well known, to the rotational invariance of the central hamiltonian (conservation of the angular momentum).

The independence from the quantum number / is called accidental degeneracy and is due to a second conservation law of the hamiltonian.

THE EIGENVALUE PROBLEM

Our aim is now to explain each degeneracy in terms of suitable ladder operators.

For the natural degeneracy, the corresponding ladder operator has to leave unchanged the quantum numbers n, I shifting the quantum number m by a unity. As it is well known, the ladder operators for the quantum number m are the operators L_{+}, L_{-}.
Also for the accidental degeneracy, we would like to give its clarification in terms of other ladder operators which leave unchanged the quantum number n (and then the energy) shifting the quantum number I.

In order to obtain a ladder operator, we use an important general theorem of linear algebra which could be called quantum shift theorem.
Theorem: given a hermitian operator B and an eigenvector $|\bar{\mu}\rangle$ of B corresponding to the eigenvalue $\bar{\mu}$, if another (not necessarily hermitian) operator \mathcal{O} satisfies the relation

$$
[B, \mathcal{O}]|\bar{\mu}\rangle=\mu \mathcal{O}|\bar{\mu}\rangle, \quad \text { for a real number } \mu,
$$

then it follows that either $\mathcal{O}|\bar{\mu}\rangle$ is the null vector, or it is still an eigenvector of B, corresponding to the eigenvalue $\bar{\mu}+\mu$.

Application to a non-degenerate spectrum

For the unidimensional harmonic oscillator we have

$$
H=\hbar \omega\left(N+\frac{1}{2}\right), \quad \text { with } N=a^{\dagger} a \text {. }
$$

Since $\left[N, a^{\dagger}\right]=a^{\dagger}=(+1) a^{\dagger}$, that is $\mu=1$, it follows that for each eigenvector $|n\rangle$ of N, the vector $a^{\dagger}|n\rangle$ is the eigenvector of N corresponding to the shifted eigenvalue $n+\mu=n+1$.
Analogously, since $[N, a]=-a=(-1) a$, that is $\mu=-1$, it follows that for each eigenvector $|n\rangle$ of N, the vector $a|n\rangle$ is either the null vector or is the eigenvector of N corresponding to the shifted eigenvalue $n+\mu=n-1$.

Application to a non-degenerate spectrum

By virtue of these properties, the non-hermitian operators a^{\dagger}, a are called ladder operators of the unidimensional harmonic oscillator.

Application to a degenerate spectrum

By denoting with $|I, m\rangle$ the simultaneous eigenvectors of the hermitian operators L^{2}, L_{z}, we have that the specification of the quantum number $m=-I,-I+1,-I+2, \ldots, I-2, I-1, I$ removes the degeneracy of the spectrum of L^{2}.

Since $\left[L^{2}, L_{ \pm}\right]=0$ and $\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}$, that is $\mu= \pm \hbar$, then if $L_{ \pm}|I, m\rangle$ is not the null vector, it follows

$$
\begin{aligned}
& L^{2}|I, m\rangle=\hbar^{2} I(I+1)|I, m\rangle \\
& L^{2}\left[L_{ \pm}|I, m\rangle\right]=\hbar^{2} I(I+1)\left[L_{ \pm}|I, m\rangle\right]
\end{aligned}
$$

that is $|I, m\rangle$ and $L_{ \pm}|I, m\rangle$ are eigenvectors of L^{2} corresponding to the same eigenvalue $\hbar^{2} I(I+1)$,

Application to a degenerate spectrum

and then

$$
L_{z}\left[L_{ \pm}|I, m\rangle\right]=\hbar(m \pm 1)\left[L_{ \pm}|I, m\rangle\right]
$$

that is, by virtue of the theorem with $\mu= \pm \hbar$, the vectors $L_{ \pm}|I, m\rangle$ are eigenvectors of L_{z} corresponding to the shifted eigenvalues $m \pm 1$.

For these properties, the operators $L_{ \pm}$are called ladder operators of the angular momentum.

Statement of the problem

By denoting the eigenvectors of the hamiltonian \mathcal{H} of the TIHO with $\left|\psi_{n, l, m}\right\rangle \equiv|n, I, m\rangle$, we look for a raising operator, denoted by \mathcal{M}_{+}, such that, in analogy with the degenerate case of the angular momentum, it yields

$$
\begin{aligned}
& \text { 1) } \mathcal{H}|n, I, m\rangle=E_{n}|n, I, m\rangle \\
& \text { 2) } \mathcal{H}\left[\mathcal{M}_{+}|n, I, m\rangle\right]=E_{n}\left[\mathcal{M}_{+}|n, I, m\rangle\right],
\end{aligned}
$$

that is $|n, I, m\rangle$ and $\mathcal{M}_{+}|n, I, m\rangle$ have the same energy E_{n}, and

$$
\text { 3) } \quad L^{2}\left(\mathcal{M}_{+}|n, I, m\rangle\right)=\hbar^{2}[I(I+1)+(4 I+6)]\left(\mathcal{M}_{+}|n, I, m\rangle\right) \text {, }
$$

Statement of the problem

because the difference between two consecutive eigenvalues of \boldsymbol{L}^{2} (having the same parity) is

$$
(I+2)(I+3)-I(I+1)=4 I+6
$$

As a consequence, the raising operator \mathcal{M}_{+}has to satisfy, by virtue of the quantum shift theorem, the two commutation rules

$$
\left[\mathcal{H}, \mathcal{M}_{+}\right]=0
$$

and

$$
\left[L^{2}, \mathcal{M}_{+}\right]|n, l, \bar{m}\rangle=\hbar^{2}(4 l+6) \mathcal{M}_{+}|n, l, \bar{m}\rangle
$$

for some eigenvectors $|n, I, \bar{m}\rangle$ of L^{2}, with $\mu=4 I+6$.

Conserved second order tensor

It is easy to prove that the second conservation law of the hamiltonian

$$
\mathcal{H}=\frac{\boldsymbol{p}^{2}}{2 m}+\frac{m \omega^{2} \boldsymbol{r}^{2}}{2}
$$

of the TIHO is the symmetric second order tensor

$$
T_{i j}=\frac{p_{i} p_{j}+m^{2} \omega^{2} x_{i} x_{j}}{2}
$$

whose trace is coincident with the hamiltonian.

THE EIGENVALUE PROBLEM

Construction of the ladder operators

With the conserved components

$$
\mathcal{M}_{x}=\frac{p_{x} p_{y}}{2 m \omega}+\frac{m \omega}{2} x y \quad \text { and } \quad \mathcal{M}_{y}=\frac{p_{y}^{2}-p_{x}^{2}}{4 m \omega}+\frac{m \omega}{4}\left(y^{2}-x^{2}\right)
$$

of the tensor $T_{i j}$ we construct the operators $\mathcal{M}_{ \pm}=\mathcal{M}_{x} \pm i \mathcal{M}_{y}$, which verify the commutation rules

$$
\begin{equation*}
\left[L_{z}, \mathcal{M}_{ \pm}\right]= \pm 2 \hbar \mathcal{M}_{ \pm} \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\boldsymbol{L}^{2}, \mathcal{M}_{+}\right]=4 \hbar \mathcal{M}_{+} L_{z}+6 \hbar^{2} \mathcal{M}_{+}+\mathcal{O}(\boldsymbol{r}, \boldsymbol{p}) L_{+}, \tag{2b}
\end{equation*}
$$

where $\mathcal{O}(\boldsymbol{r}, \boldsymbol{p})$ is a differential operator depending on the components of $\boldsymbol{r}, \boldsymbol{p}$.

THE EIGENVALUE PROBLEM

Construction of the ladder operators

From the relation (2b) it effectively follows, with $\mu=4 I+6$

$$
\begin{equation*}
\left[L^{2}, \mathcal{M}_{+}\right]|n, I, I\rangle=\hbar^{2}(4 I+6) \mathcal{M}_{+}|n, I, I\rangle . \tag{3}
\end{equation*}
$$

At this point, the conservation of \mathcal{M}_{+}, that is $\left[\mathcal{H}, \mathcal{M}_{+}\right]=0$, assures that the two vectors $|n, I, I\rangle$ and $\mathcal{M}_{+}|n, I, I\rangle$ have the same energy, that is they correspond to the same energy eigenvalue E_{n}.

Further, the relations (2a) and (3) give us, up to a normalization constant C, the operatorial action

$$
\mathcal{M}_{+}|n, I, I\rangle=C|n, I+2, I+2\rangle
$$

and then the operator \mathcal{M}_{+}is the raising operator of \boldsymbol{L}^{2}.

THE EIGENVALUE PROBLEM

Clarification of the accidental degeneration

By iterating the action of the raising operator \mathcal{M}_{+}on the eigenvectors $|n, I, I\rangle$ starting from $I=0$ or $I=1$, we obtain all the eigenvectors of the degenerate eigenspace of E_{n}, because we get

$$
|n, 0,0\rangle \longrightarrow|n, 2,2\rangle \longrightarrow|n, 4,4\rangle \longrightarrow \ldots \longrightarrow|n, n, n\rangle
$$

for even n and

$$
|n, 1,1\rangle \longrightarrow|n, 3,3\rangle \longrightarrow|n, 5,5\rangle \longrightarrow \ldots \longrightarrow|n, n, n\rangle
$$

for odd n.

Clarification of the accidental degeneration

In order to terminate, we want to explain shortly why the lowering operator of L^{2} does not exist. Both the commutation rule

$$
\left[L^{2}, \mathcal{M}_{-}\right]|I,-I\rangle=\hbar^{2}(4 I+6) \mathcal{M}_{-}|I,-I\rangle
$$

and the relation (2a) give us the operatorial action of \mathcal{M}_{-}

$$
\mathcal{M}_{-}|n, I,-l\rangle=\tilde{C}|n, I+2,-l-2\rangle,
$$

from which we can realize that the action of \mathcal{M}_{-}on $|n, I,-I\rangle$ can not give an eigenvector with a lower quantum number of the operator L^{2}, because the quantum number $m=-I-2$ can not belong to the multiplet of $I-2$.

Clarification of the accidental degeneration

By iterating the action of the lowering operator \mathcal{M}_{-}on the eigenvectors $|n, I,-I\rangle$ starting from $I=0$ or $I=1$, we then obtain

$$
|n, 0,0\rangle \longrightarrow|n, 2,-2\rangle \longrightarrow|n, 4,-4\rangle \longrightarrow \ldots \longrightarrow|n, n,-n\rangle
$$

for even n and

$$
|n, 1,-1\rangle \longrightarrow|n, 3,-3\rangle \longrightarrow|n, 5,-5\rangle \longrightarrow \ldots \longrightarrow|n, n,-n\rangle
$$ for odd n.

THANK YOU VERY MUCH FOR YOUR ATTENTION

