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Solution in Cartesian Coordinates
Solution in Spherical Polar Coordinates

Schrödinger equation

The Schrödinger equation of the quantum Tridimensional
Isotropic Harmonic Oscillator (TIHO) is[

− ~2

2m
∇2 +

mω2r2

2

]
Ψ(x , y , z) = E Ψ(x , y , z). (1)

If we rewrite the eigenfunctions in the separated form
Ψ(x , y , z) = φ(x) η(y)χ(z), the equation (1) becomes
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Solution in Cartesian Coordinates
Solution in Spherical Polar Coordinates

Separated Schrödinger equation

1
φ(x)

[
− ~2

2m
d2

dx2 +
mω2x2

2

]
φ(x)+

+
1

η(y)

[
− ~2

2m
d2

dy2 +
mω2y2

2

]
η(y)+

+
1

χ(z)

[
− ~2

2m
d2

dz2 +
mω2z2

2

]
χ(z) = E ,

that is

Hx φ(x)

φ(x)
+

Hy η(y)

η(y)
+

Hz χ(z)

χ(z)
= E .
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Solution in Cartesian Coordinates
Solution in Spherical Polar Coordinates

Separated Schrödinger equation

In the last equation each term in the left hand side has to be a
constant because the terms depend on the different variables
x , y , z and their sum is the constant E . Then we can write

Hx φ(x)

φ(x)
= Ex ,

Hy η(y)

η(y)
= Ey ,

Hz χ(z)

χ(z)
= Ez ,

which are three eigenvalue problems of unidimensional
harmonic oscillator.
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Solution in Cartesian Coordinates
Solution in Spherical Polar Coordinates

Eigenvalues and eigenfunctions

We then obtain the eigenvalues of the quantum TIHO

En = ~ω
(

nx + ny + nz +
3
2

)
= ~ω

(
n +

3
2

)
,

with nx + ny + nz = n, and the corresponding eigenfunctions
denoted by

Ψn(x , y , z) = φnx (x) ηny (y)χnz (z) or |Ψn〉 = |nx ,ny ,nz〉.
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Solution in Cartesian Coordinates
Solution in Spherical Polar Coordinates

Polar Schrödinger Equation

If we write the Schrödinger equation (1)[
− ~2

2m
∇2 +

mω2r2

2

]
Ψ(x , y , z) = E Ψ(x , y , z)

in spherical polar coordinates and separate the eigenfunction
as Ψ(x , y , z) ≡ R(r)Yl,m(θ, ϕ), the radial equation for the
function R(r) ≡ Rn,l(r) is

d2R(r)

dr2 +
2
r

dR(r)

dr
+

[
2mEn

~2 − m2ω2r2

~2 − l(l + 1)

r2

]
R(r) = 0.
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Solution in Spherical Polar Coordinates

Polar eigenfunctions and Laguerre polynomials

If we solve the radial equation by power series expansion, we
obtain the same eigenvalues

En = ~ω
(

nx + ny + nz +
3
2

)
= ~ω

(
n +

3
2

)
and the eigenfunctions in polar coordinates

ψnlm(r) = Rnl(r)Ylm(θ, φ) = N r l e−αr2/2 L(l+1/2)
n/2−l/2(αr2) Ylm(θ, φ),
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Solution in Spherical Polar Coordinates

Parity of the quantum numbers

where

1) the nonnegative quantum numbers n, l have the same parity,
with l ≤ n;

2) L(a)s (x) denotes the associated Laguerre polynomials whose
expression for the real parameter a > −1 and the nonnegative
integer parameter s is

L(a)s (x) =
ex

xa
ds

dxs (xs+ae−x ).
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Degeneracy and spherical harmonics
Eigenfunctions for n = 1 and n = 2

Dimension of the eigenspace of En

It is worth noting that the total degeneracy dn of an eigenvalue
En is

dn =
(n + 1)(n + 2)

2
and that the number dn is coincident with the total number N of
spherical harmonics corresponding to all quantum numbers l
having the same parity of n, with l ≤ n.
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Degeneracy and spherical harmonics
Eigenfunctions for n = 1 and n = 2

Comparison with the spherical harmonics

In fact, for even n = 2m we have l = 2k and then

N =
m∑

k=0

[2 (2k)+1] = 2m2+3m+1 =
(2m + 1)(2m + 2)

2
= d2m ;

while for odd n = 2m + 1 we have l = 2k + 1 and then

N =
m∑

k=0

[2 (2k+1)+1] = 2m2+5m+3 =
(2m + 2)(2m + 3)

2
= d2m+1.
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Degeneracy and spherical harmonics
Eigenfunctions for n = 1 and n = 2

Degeneracy: example with n = 1

For n = 1 we have the d1 = (1 + 1)(1 + 2)/2 = 3
eigenfunctions denoted by |nx ,ny ,nz〉 given by

|1,0,0〉, |0,1,0〉, |0,0,1〉

or the three eigenfunctions denoted by |ψn,l,m〉 given by

|ψ1,1,−1〉, |ψ1,1,0〉, |ψ1,1,1〉,

corresponding to the same eigenvalue

E1 =
5
2
~ω.
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Degeneracy and spherical harmonics
Eigenfunctions for n = 1 and n = 2

Degeneracy: example with n = 2

For n = 1 we have the d2 = (2 + 1)(2 + 2)/2 = 6
eigenfunctions denoted by |nx ,ny ,nz〉 given by

|2,0,0〉, |0,2,0〉, |0,0,2〉, |1,1,0〉, |1,0,1〉, |0,1,1〉,

or the six eigenfunctions denoted by |ψn,l,m〉 given by

|ψ2,2,2〉, |ψ2,2,1〉, |ψ2,2,0〉, |ψ2,2,−1〉, |ψ2,2,−2〉, |ψ2,0,0〉,

corresponding to the same eigenvalue

E2 =
7
2
~ω.
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Degeneracy and spherical harmonics
Eigenfunctions for n = 1 and n = 2

Natural and accidental degeneracy

From the eigenfunctions |ψn,l,m〉 corresponding to the
eigenvalue E2 we see that the energy E2 is independent from
both the quantum numbers l ,m.

The independence from the quantum number m is called
natural degeneracy and is due, as it is well known, to the
rotational invariance of the central hamiltonian (conservation of
the angular momentum).

The independence from the quantum number l is called
accidental degeneracy and is due to a second conservation law
of the hamiltonian.
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Quantum shift theorem

Degeneracy and ladder operators

Our aim is now to explain each degeneracy in terms of suitable
ladder operators.

For the natural degeneracy, the corresponding ladder operator
has to leave unchanged the quantum numbers n, l shifting the
quantum number m by a unity. As it is well known, the ladder
operators for the quantum number m are the operators L+,L−.

Also for the accidental degeneracy, we would like to give its
clarification in terms of other ladder operators which leave
unchanged the quantum number n (and then the energy)
shifting the quantum number l .
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Quantum shift theorem

Statement of the theorem

In order to obtain a ladder operator, we use an important
general theorem of linear algebra which could be called
quantum shift theorem.

Theorem: given a hermitian operator B and an eigenvector |µ̄〉
of B corresponding to the eigenvalue µ̄, if another (not
necessarily hermitian) operator O satisfies the relation

[B,O]|µ̄〉 = µO|µ̄〉, for a real number µ,

then it follows that either O|µ̄〉 is the null vector, or it is still an
eigenvector of B, corresponding to the eigenvalue µ̄+ µ.
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Quantum shift theorem

Application to a non-degenerate spectrum

For the unidimensional harmonic oscillator we have

H = ~ω
(

N +
1
2

)
, with N = a†a.

Since [N,a†] = a† = (+1)a†, that is µ = 1, it follows that for
each eigenvector |n〉 of N, the vector a†|n〉 is the eigenvector of
N corresponding to the shifted eigenvalue n + µ = n + 1.

Analogously, since [N,a] = −a = (−1)a, that is µ = −1, it
follows that for each eigenvector |n〉 of N, the vector a|n〉 is
either the null vector or is the eigenvector of N corresponding to
the shifted eigenvalue n + µ = n − 1.
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Quantum shift theorem

Application to a non-degenerate spectrum

By virtue of these properties, the non-hermitian operators a†,a
are called ladder operators of the unidimensional harmonic
oscillator.
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Quantum shift theorem

Application to a degenerate spectrum

By denoting with |l ,m〉 the simultaneous eigenvectors of the
hermitian operators L2,Lz , we have that the specification of the
quantum number m = −l ,−l + 1,−l + 2, . . . , l − 2, l − 1, l
removes the degeneracy of the spectrum of L2.

Since [L2,L±] = 0 and [Lz ,L±] = ±~L±, that is µ = ±~, then if
L±|l ,m〉 is not the null vector, it follows

L2|l ,m〉 = ~2 l(l + 1)|l ,m〉,

L2
[
L±|l ,m〉

]
= ~2 l(l + 1)

[
L±|l ,m〉

]
,

that is |l ,m〉 and L±|l ,m〉 are eigenvectors of L2 corresponding
to the same eigenvalue ~2 l(l + 1),
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Quantum shift theorem

Application to a degenerate spectrum

and then
Lz

[
L±|l ,m〉

]
= ~ (m ± 1)

[
L±|l ,m〉

]
,

that is, by virtue of the theorem with µ = ±~, the vectors
L±|l ,m〉 are eigenvectors of Lz corresponding to the shifted
eigenvalues m ± 1.

For these properties, the operators L± are called ladder
operators of the angular momentum.
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Second conservation law
Ladder operator for the accidental degeneracy

Statement of the problem

By denoting the eigenvectors of the hamiltonian H of the TIHO
with |ψn,l,m〉 ≡ |n, l ,m〉, we look for a raising operator, denoted
byM+, such that, in analogy with the degenerate case of the
angular momentum, it yields

1) H|n, l ,m〉 = En |n, l ,m〉,

2) H
[
M+|n, l ,m〉

]
= En

[
M+|n, l ,m〉

]
,

that is |n, l ,m〉 andM+|n, l ,m〉 have the same energy En, and

3) L2
(
M+|n, l ,m〉

)
= ~2[l(l + 1) + (4l + 6)]

(
M+|n, l ,m〉

)
,
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Second conservation law
Ladder operator for the accidental degeneracy

Statement of the problem

because the difference between two consecutive eigenvalues
of L2 (having the same parity) is

(l + 2)(l + 3)− l(l + 1) = 4l + 6.

As a consequence, the raising operatorM+ has to satisfy, by
virtue of the quantum shift theorem, the two commutation rules

[H,M+] = 0

and
[L2,M+]|n, l , m̄〉 = ~2(4l + 6)M+|n, l , m̄〉,

for some eigenvectors |n, l , m̄〉 of L2, with µ = 4l + 6.
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Second conservation law
Ladder operator for the accidental degeneracy

Conserved second order tensor

It is easy to prove that the second conservation law of the
hamiltonian

H =
p2

2m
+

mω2r2

2
of the TIHO is the symmetric second order tensor

Tij =
pipj + m2ω2xixj

2
,

whose trace is coincident with the hamiltonian.
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Second conservation law
Ladder operator for the accidental degeneracy

Construction of the ladder operators

With the conserved components

Mx =
pxpy

2mω
+

mω
2

xy and My =
p2

y − p2
x

4mω
+

mω
4

(y2−x2),

of the tensor Tij we construct the operatorsM± =Mx ± iMy ,
which verify the commutation rules

[Lz ,M±] = ±2~M± (2a)

and
[L2,M+] = 4~M+Lz + 6~2M+ +O(r ,p)L+ , (2b)

where O(r ,p) is a differential operator depending on the
components of r ,p.
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Second conservation law
Ladder operator for the accidental degeneracy

Construction of the ladder operators
From the relation (2b) it effectively follows, with µ = 4l + 6

[L2,M+]|n, l , l〉 = ~2(4l + 6)M+|n, l , l〉. (3)

At this point, the conservation ofM+, that is [H,M+] = 0,
assures that the two vectors |n, l , l〉 andM+|n, l , l〉 have the
same energy, that is they correspond to the same energy
eigenvalue En.

Further, the relations (2a) and (3) give us, up to a normalization
constant C, the operatorial action

M+|n, l , l〉 = C |n, l + 2, l + 2〉

and then the operatorM+ is the raising operator of L2.
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Second conservation law
Ladder operator for the accidental degeneracy

Clarification of the accidental degeneration

By iterating the action of the raising operatorM+ on the
eigenvectors |n, l , l〉 starting from l = 0 or l = 1, we obtain all
the eigenvectors of the degenerate eigenspace of En, because
we get

|n,0,0〉 −→ |n,2,2〉 −→ |n,4,4〉 −→ . . . −→ |n,n,n〉

for even n and

|n,1,1〉 −→ |n,3,3〉 −→ |n,5,5〉 −→ . . . −→ |n,n,n〉

for odd n.
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Second conservation law
Ladder operator for the accidental degeneracy

Clarification of the accidental degeneration

In order to terminate, we want to explain shortly why the
lowering operator of L2 does not exist. Both the commutation
rule

[L2,M−]|l ,−l〉 = ~2(4l + 6)M−|l ,−l〉

and the relation (2a) give us the operatorial action ofM−

M−|n, l ,−l〉 = C̃ |n, l + 2,−l − 2〉,

from which we can realize that the action ofM− on |n, l ,−l〉
can not give an eigenvector with a lower quantum number of
the operator L2, because the quantum number m = −l − 2 can
not belong to the multiplet of l − 2.
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Second conservation law
Ladder operator for the accidental degeneracy

Clarification of the accidental degeneration

By iterating the action of the lowering operatorM− on the
eigenvectors |n, l ,−l〉 starting from l = 0 or l = 1, we then
obtain

|n,0,0〉 −→ |n,2,−2〉 −→ |n,4,−4〉 −→ . . . −→ |n,n,−n〉

for even n and

|n,1,−1〉 −→ |n,3,−3〉 −→ |n,5,−5〉 −→ . . . −→ |n,n,−n〉

for odd n.
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Second conservation law
Ladder operator for the accidental degeneracy

THANK YOU VERY MUCH FOR
YOUR ATTENTION
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