On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic Plane

L. Ambrogi F. Aharonian E. de Oña Wilhelmi

S Lucia Ambrogi Gran Sasso Science Institute, INFN L'Aquila Rome - SIF Congress – September 22nd, 2015

G

Ground based Gamma-ray Astronomy

Next Generation IACT array: CTA

expected to qualitatively extend our knowledge in HE astrophysics thanks to its capabilities well beyond those of existing instruments

What is the potential of CTA-like instrument and its response to different observation modes and different source scenarios?

CTA-like instrument recipe: Effective area Background rate Angular resolution

publicly available results of calculations of the performance for the southern site of CTA from 50 GeV to 100 TeV

https://portal.cta-observatory.org/Pages/CTA-Performance.aspx

\rightarrow parameterization with analytical formula

✓ Effective area
 ✓ Background rate
 ✓ Angular resolution

A= 0.028 deg B= 0.8

" Improved sensitivity by at least an order of magnitude compared to existing VHE instruments "

B.S. Acharya et al. Astroparticle Physics 43 (2013) 3-18

Mon.Not.Roy.Astron.Soc. 402 (2010) 1877-1882

" Improved sensitivity by at least an order of magnitude compared to existing VHE instruments "

B.S. Acharya et al. Astroparticle Physics 43 (2013) 3-18

" Improved sensitivity by at least an order of magnitude compared to existing VHE instruments "

B.S. Acharya et al. Astroparticle Physics 43 (2013) 3-18

What is the response of a CTA-like instrument to multiple sources in the same FoV?

How the non-Gaussian tails of the PSF change the potential of the instrument?

Isolated source simulation

• Gaussian shape

$$f(x, y) = A \cdot exp\left(-\left(\frac{(x-X_0)^2}{2\sigma_{src}^2}\right) + \left(\frac{(y-Y_0)^2}{2\sigma_{src}^2}\right)\right)$$

 $(X_0, Y_0) = (0, 0) \deg$

point-like and extended sources, i.e. 0.1deg and 0.2deg.

Crab-like spectrum as measured by HEGRA Astrophys.J. 614 (2004) 897-913

$$\frac{dN}{dE} = n \cdot N_0 \times \left(\frac{E}{1 \, T eV}\right)^{-\alpha}$$

 $\alpha = 2.62$
 $N_0 = 2.83 \cdot 10^{-11} \, \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$
 $1 \, \text{C.U.} = 2.83 \cdot 10^{-11} \times E^{-2.62} \, \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$

Reconstruction of morphological parameters for non-Gaussian PSF response

Reconstruction of morphological parameters for non-Gaussian PSF response

Two nearby sources

- 2 Gaussian shaped sources with a Crab-like spectrum placed in the same FoV:
 - 1^{st} source \rightarrow point-like
 - 2^{nd} source \rightarrow point-like, extended (0.2deg)
- The gamma photons emitted by the 2^{nd} object represent an extra source of background in addition to the CR noise: $N_B = N_{CR} + N_{\gamma}$

Detection Rates for Gaussian PSF

•

- the background regimes depend on the 1st source strength, on the 2nd source strength and on the distance.
- Point-like 2nd source at 0.3deg does not affect the target detection, only CR.
- in case of extended 2nd source a distance larger than 0.3deg is needed in order to deal with pure CR background.

Detection Rates for non-Gaussian PSF

- the fake emission from the tails of the PSF works as an extra source of noise, in addition to the photons from the second source and to the CR background
- the additional background from the tails makes the realization of the background free regime more challenging; a 1st source as bright as 10%Crab is needed to avoid background dominated regime
- the effect of the 2nd source on the total background is not really dependent on its actual size \rightarrow close point-like gamma emitter behaves like a fake object having size $\sigma_{src2} = \sigma_{PSFtails} = 0.2$ deg.

Sensitivity curves for Gaussian PSF

$\sigma \geq 5$

 $N_{\gamma}/N_{bkg} \ge 0.05$

- Hypothesis:
- obs. Time = 50 h

 $N_{\gamma} \ge 10$

- 2nd source in the FoV of a point-like object @ 10%Crab
- Gaussian PSF

Sensitivity curves for Gaussian PSF

Sensitivity curves for non-Gaussian PSF

point-like 2nd source extended 2nd source 10⁻¹⁰ Distance: Distance: d = 0.3 deg d = 0.3 deg d = 0.5 deg d = 0.5 deg d = 0.8 deg d = 0.8 deg E² dN/dE [TeV cm⁻² s⁻¹] ₇₁ CTA sensitivity CTA sensitivity 10⁻¹³ 10⁻¹⁴ 10^{-2} 10² Energy [TeV] 10⁻² 10² 10⁻¹ 10^{-1} 1 10 1 10 Energy [TeV]

 $\sigma \ge 5$

- Hypothesis:
- obs. Time = 50 h

 $N_{\gamma} \ge 10$

 $N_{\gamma}/N_{bkg} \ge 0.05$

- 2nd source in the FoV of a point-like object @ 10%Crab
- non-Gaussian PSF with $\sigma_{\rm PSFtails}$ =0.2deg and R=0.3

Sensitivity curves for non-Gaussian PSF

- @ ≥0.3deg the sensitivity deviates from CTA expectations regardless the size of the 2nd source
 - the non-Gaussian shape of the PSF makes the distributions for different sizes of the 2nd source to be similar due to the fake emission from the tails which behave like an artificial object having size $\sigma_{PSFtails}$ =0.2deg
 - the sensitivity might get worse by a factor >10 due to the combination of fake emission from the tails and real emission from the 2nd source

10⁻²

Summary

- In the framework of the Galactic Plane region, which is dense with HE sources, the detection of multiple sources in the same FoV is very likely to happen.
- The presence of a nearby source creates an additional and unavoidable background which might dominate over the CR noise.
- The sensitivity to observe sources as weak as those foreseen by CTA might get worse and the expected factor 10 improvement might not be fulfilled in such scenarios.
- The fake emission from the tails of a non-Gaussian PSF (for which we gave one possible representation) might add extra noise which might compromise proper morphological studies and make the observation of weak sources even more challenging.

Thank you!

CTA-like instrument recipe: Effective area Angular resolution Background rate

publicly available results of calculations of the performance for the southern site of CTA from 50 GeV to 100 TeV

https://portal.cta-observatory.org/Pages/CTA-Performance.aspx

Energy	A_{eff} [m ²]	σ_{PSF} [deg]	BgRate [Hz/deg ²]
[0.05 - 0.1] TeV	$4.1 \cdot 10^{4}$	0.147	9.69 · 10 ^{−1}
[0.1 - 1] TeV	$2.4 \cdot 10^{5}$	0.083	$1.53 \cdot 10^{-1}$
[1 – 10] TeV	$1.66 \cdot 10^{6}$	0.042	$3.20 \cdot 10^{-3}$
[10 – 100] TeV	$3.73 \cdot 10^{6}$	0.031	$3.55 \cdot 10^{-5}$

Detection rates

 $R_{ROI} = \sqrt{(2\sigma_{src})^2 + (2\sigma_{PSF})^2}$ 1 C.U. = 2.83 \cdot 10^{-11} \times E^{-2.62} \text{ TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}.

S/B < 1 Background dominated regime

S/B > 1 Background free regime

Detection rates

Detection rates

- point-like objects → the observation of very weak sources with a flux intensity smaller than 0.1% Crab proceeds under the background free regime for energies larger than few TeV. In the sub-TeV domain the CR noise does not allow a clean observation of such weak objects and the domination of the signal over the background takes place for flux intensity of the order of 1-10% Crab flux.
- extended objects → the transition from the background dominated to free regimes needs about one order of magnitude larger flux wrt point-like sources, mainly due to the larger integration region.

nd free

Reconstruction of morphological parameters for non-Gaussian PSF response

• The tails effect depends on the value of R, on the actual source size and on the energy domain \rightarrow on the sensitivity of the telescope.

Two nearby sources

