SAPIENZA
 Image: Conclusions

 Image: Conclusions
 Image: Conclosis

 Image: Conclusions

A. Paiella^{1,2}, M.G. Castellano³, A. Coppolecchia^{1,2}, I. Colantoni¹, A. Cruciani^{1,2}, A. D'Addabbo⁴, P. de Bernardis^{1,2}, S. Masi^{1,2}, G. Presta¹

- ¹ Sapienza Università di Roma, Italia
- ² INFN, Roma, Italia
- ³ IFN-CNR, Roma, Italia
- ⁴ LNGS-INFN, Assergi (AQ), Italia

Comsic Microwave Background The W Band

- The Cosmic Microwave Background (CMB) is the oldest light in the Universe, dating to the epoch of Recombination (about 380 000 years after the Big Bang).
- All the information encoded in the map of the CMB are contained in the angular power spectrum

Comsic Microwave Background The W Band

- The Cosmic Microwave Background (CMB) is the oldest light in the Universe, dating to the epoch of Recombination (about 380 000 years after the Big Bang).
- All the information encoded in the map of the CMB are contained in the angular power spectrum

Comsic Microwave Background The W Band

- CMB polarization measurements are of special interest because they would bring important confirmation to the theory of inflation and gravitational waves.
- Planck spider-web bolometers were able to measure the E modes, but not the B modes.
- Low Temperature spider-web bolometers work in BLIP condition, so such a gain has to arise from larger focal planes, with arrays of thousands of independent detectors ⇒ MULTIPLEXING.

Comsic Microwave Background The W Band

- CMB polarization measurements are of special interest because they would bring important confirmation to the theory of inflation and gravitational waves.
- Planck spider-web bolometers were able to measure the E modes, but not the B modes.
- Low Temperature spider-web bolometers work in BLIP condition, so such a gain has to arise from larger focal planes, with arrays of thousands of independent detectors ⇒ MULTIPLEXING.

Comsic Microwave Background The W Band

- CMB polarization measurements are of special interest because they would bring important confirmation to the theory of inflation and gravitational waves.
- Planck spider-web bolometers were able to measure the E modes, but not the B modes.
- Low Temperature spider-web bolometers work in BLIP condition, so such a gain has to arise from larger focal planes, with arrays of thousands of independent detectors ⇒ MULTIPLEXING.

Comsic Microwave Background The W Band

The W Band

WHY THE W BAND?

- The W-band lies at an interesting transition between frequencies where Galactic emission is dominated by free-free and synchrotron, and frequencies where is dominated by dust.
- In this band, the atmosphere is quite transparent, and then we can perform ground-based observations, avoiding the costs, complications and size limitations of balloon-borne and space-based missions.

Comsic Microwave Background The W Band

The W Band

WHY THE W BAND?

- The W-band lies at an interesting transition between frequencies where Galactic emission is dominated by free-free and synchrotron, and frequencies where is dominated by dust.
- In this band, the atmosphere is quite transparent, and then we can perform ground-based observations, avoiding the costs, complications and size limitations of balloon-borne and space-based missions.

4

Comsic Microwave Background The W Band

The W Band

WHY THE W BAND?

- The W-band lies at an interesting transition between frequencies where Galactic emission is dominated by free-free and synchrotron, and frequencies where is dominated by dust.
- In this band, the atmosphere is quite transparent, and then we can perform ground-based observations, avoiding the costs, complications and size limitations of balloon-borne and space-based missions.

4

What KIDs are How KIDs work Fabrication

What KIDs are

- 4 同 ▶ - 4 回 ▶

э

What KIDs are How KIDs work Fabrication

What KIDs are

・ロト ・ 同ト ・ ヨト ・

글 🖒 🛛 글

What KIDs are How KIDs work Fabrication

What KIDs are

(本間) (本語)

What KIDs are How KIDs work Fabrication

What KIDs are

(本間) (本語)

What KIDs are How KIDs work Fabrication

How KIDs work

Which are the effects of incoming radiation?

- A Kinetic Inductance Detector works on the principle that incident photons, with enough energy to break Cooper pairs (hν > 2Δ), change the surface impedance of a superconductor (Z_s).
- In particular, the photons absorbed in the superconductor break the Cooper pairs producing quasi-particles (n_{qp}), and the rise in quasi-particle density results in a change of the kinetic inductance (L_k).
- This change can be accurately measured using a thin film superconducting resonant circuit, and sensing the change in amplitude and in phase of a microwave signal transmitted through the resonator.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

What KIDs are How KIDs work Fabrication

How KIDs work

WHICH ARE THE EFFECTS OF INCOMING RADIATION?

- A Kinetic Inductance Detector works on the principle that incident photons, with enough energy to break Cooper pairs (hν > 2Δ), change the surface impedance of a superconductor (Z_s).
- In particular, the photons absorbed in the superconductor break the Cooper pairs producing quasi-particles (n_{qp}), and the rise in quasi-particle density results in a change of the kinetic inductance (L_k).
- This change can be accurately measured using a thin film superconducting resonant circuit, and sensing the change in amplitude and in phase of a microwave signal transmitted through the resonator.

What KIDs are How KIDs work Fabrication

How KIDs work

WHICH ARE THE EFFECTS OF INCOMING RADIATION?

- A Kinetic Inductance Detector works on the principle that incident photons, with enough energy to break Cooper pairs (hν > 2Δ), change the surface impedance of a superconductor (Z_s).
- In particular, the photons absorbed in the superconductor break the Cooper pairs producing quasi-particles (n_{qp}) , and the rise in quasi-particle density results in a change of the kinetic inductance (L_k) .
- This change can be accurately measured using a thin film superconducting resonant circuit, and sensing the change in amplitude and in phase of a microwave signal transmitted through the resonator.

What KIDs are How KIDs work Fabrication

How KIDs work

WHICH ARE THE EFFECTS OF INCOMING RADIATION?

- A Kinetic Inductance Detector works on the principle that incident photons, with enough energy to break Cooper pairs (hν > 2Δ), change the surface impedance of a superconductor (Z_s).
- In particular, the photons absorbed in the superconductor break the Cooper pairs producing quasi-particles (n_{qp}) , and the rise in quasi-particle density results in a change of the kinetic inductance (L_k) .
- This change can be accurately measured using a thin film superconducting resonant circuit, and sensing the change in amplitude and in phase of a microwave signal transmitted through the resonator.

What KIDs are How KIDs work Fabrication

How KIDs work

When photons, with $h\nu_{\gamma}>2\Delta$, hit the KID ...

What KIDs are How KIDs work Fabrication

How KIDs work

$$\dots n_{qp} \uparrow \quad \Rightarrow \quad \begin{cases} L_k \uparrow \\ R_s \uparrow \end{cases} \quad \Rightarrow \quad \begin{cases} \nu_{res} \propto 1/\sqrt{LC} \downarrow \\ Q \propto \frac{1}{R_s} \sqrt{\frac{L}{C}} \downarrow \end{cases} \quad \dots$$

- T-

What KIDs are How KIDs work Fabrication

How KIDs work

$$\dots \quad \frac{\delta\varphi}{dN_{qp}} = \text{responsivity}.$$

- T-

What KIDs are How KIDs work Fabrication

Fabrication

Our prototypes are fabricated at the Istituto di fotonica e nanotecnologie (IFN), of the Consiglio Nazionale delle Ricerche (CNR).

Experimental Setup Critical Temperature Electrical Test Optical Test

Experimental Setup

- the cryogenic system, necessary to reach the optimum working temperature;
- the optical system, necessary to remove the non interesting radiation and to focus the interesting radiation on the detectors;
- the data acquisition system, with which we can investigate the electrical and the optical characteristics of the resonators;
- the thermometers and the control unit, with which we can read the temperature and power the heaters.

Experimental Setup Critical Temperature Electrical Test Optical Test

Experimental Setup

- the cryogenic system, necessary to reach the optimum working temperature;
- the optical system, necessary to remove the non interesting radiation and to focus the interesting radiation on the detectors;
- the data acquisition system, with which we can investigate the electrical and the optical characteristics of the resonators;
- the thermometers and the control unit, with which we can read the temperature and power the heaters.

Experimental Setup Critical Temperature Electrical Test Optical Test

Experimental Setup

- the cryogenic system, necessary to reach the optimum working temperature;
- the optical system, necessary to remove the non interesting radiation and to focus the interesting radiation on the detectors;
- the data acquisition system, with which we can investigate the electrical and the optical characteristics of the resonators;
- the thermometers and the control unit, with which we can read the temperature and power the heaters.

Experimental Setup Critical Temperature Electrical Test Optical Test

Experimental Setup

- the cryogenic system, necessary to reach the optimum working temperature;
- the optical system, necessary to remove the non interesting radiation and to focus the interesting radiation on the detectors;
- the data acquisition system, with which we can investigate the electrical and the optical characteristics of the resonators;
- the thermometers and the control unit, with which we can read the temperature and power the heaters.

FULL BRI	EF CON	TROL ME	SSAGES	RECYCL	E SERVI	ICE		
EII D.	Dowar Boadout							
Full De	ewar r	teauor	n –					
Channels	Ch.1	Ch.2	Ch.3	Ch.4	Ch.5	Ch.6	Ch.7	Ch.8
Diodes A	66.71 K	6.729 K	6.782 K	63.73 K	4.086 K	4.640 K	42.28 K	3.601 K
RTD 1-4	3.405 K	3.143 K	2.456 K	2.471 K				
Channels	Ch.1 (V)	Ch.2 (V)	Ch.3 (V)	Ch.4 (V)	Ch.5 (V)	Ch.6 (V)	Ch.7 (V)	Ch.8 (V)
Diodes A	1.045	1.612	1.608	1.050	1.750	1.726	1.088	1.795
Channels	V1 (µV)	V1q (µV)	I1 (nA)	R1 (Ω)	V2 (µV)	V2q (µV)	12 (nA)	R2 (Ω)
RTD 1-2	33.750	0.350	9.9750	3.3752k	34.725	1.450	7.4700	3.4755k
Channels	V3 (µV)	V3q (µV)	I3 (nA)	R3 (Ω)	V4 (µV)	V4q (µV)	I4 (nA)	R4 (Ω)
RTD 3-4	22.875	1.050	998.75	22.899	37.500	2.550	9.8025	3.7587k

Heater	Set V	State
CP4He	7.00	Ok
HS4He	0.00	Ok
СРЗНе	7.00	Ok
HS3He	0.00	Ok
FP HSCP	0.00	Ok
MDR Still	0.00	Ok
MDR Still	0.00 Recet	Ok

Experimental Setup Critical Temperature Electrical Test Optical Test

Measurements

• We measured the critical temperature to know if our detectors work in the W-band:

$$h
u = 2\Delta pprox 3.5 k_B T_c$$
;

- we performed electrical tests in order to find the resonance frequency and the quality factors of our detectors;
- we performed optical tests in order to measure the responsivity and the noise.

Experimental Setup Critical Temperature Electrical Test Optical Test

Measurements

• We measured the critical temperature to know if our detectors work in the W-band:

$$h
u = 2\Delta \approx 3.5 k_B T_c$$
;

- we performed electrical tests in order to find the resonance frequency and the quality factors of our detectors;
- we performed optical tests in order to measure the responsivity and the noise.

3 A

Experimental Setup Critical Temperature Electrical Test Optical Test

Measurements

• We measured the critical temperature to know if our detectors work in the W-band:

$$h\nu = 2\Delta \approx 3.5 k_B T_c$$
;

- we performed electrical tests in order to find the resonance frequency and the quality factors of our detectors;
- we performed optical tests in order to measure the responsivity and the noise.

Experimental Setup Critical Temperature Electrical Test Optical Test

Critical Temperature

Setup

 $\exists \rightarrow$

Experimental Setup Critical Temperature Electrical Test Optical Test

Critical Temperature: Al 40 nm

Experimental Setup Critical Temperature Electrical Test Optical Test

Critical Temperature: Al 80 nm

Experimental Setup Critical Temperature Electrical Test Optical Test

Critical Temperature: 10 nm Ti + 25 nm Al

Experimental Setup Critical Temperature Electrical Test Optical Test

Electrical Test

Alessandro Paiella Lumped Element Kinetic Inductance Detectors for the W Band 1

Experimental Setup Critical Temperature Electrical Test Optical Test

Optical Test

(人間) シスヨン スヨン

Experimental Setup Critical Temperature Electrical Test Optical Test

Sardinia Radio Telescope

Cruciani et al., PoS TIPP2014 (2014) 129

- We have studied the possibility to integrate an array in the focal plane of the 64 m-Sardinia Radio Telescope (SRT).
- In order to define the main requirements of the detectors, it is necessary to characterize the background on the devices and the consequent Noise Equivalent Power (NEP).
- We estimated the background emission in a band between 80 and 100 GHz considering different contributions:
 - the atmosphere,
 - the mirrors,
 - the optical window of the experiment and the CMB.

Experimental Setup Critical Temperature Electrical Test Optical Test

Sardinia Radio Telescope Cruciani et al., Pos TIPP2014 (2014) 129

The main requirement is that the detector should have NEP $\sim 0.1\,{\rm fW}/{\sqrt{{\rm Hz}}}$.

Conclusions

- $\bullet\,$ Our purposes are to design, fabricate and test LEKIDs able to work in the W-Band (75 $\div\,$ 110 GHz).
- We tested prototype with different AI thickness (40 and 80 nm): these are not suitable to cover the whole W-band.
- The use of Ti-Al bi-layer allows us to cover frequencies greater than 60 GHz.
- We are now performing the optical characterization of Ti-AI LEKID.
- In the same time, we are developing LEKIDs for the D-Band (110 ÷ 170 GHz).

4 3 1 1 1

Conclusions

- Our purposes are to design, fabricate and test LEKIDs able to work in the W-Band (75 \div 110 GHz).
- We tested prototype with different Al thickness (40 and 80 nm): these are not suitable to cover the whole W-band.
- The use of Ti-Al bi-layer allows us to cover frequencies greater than 60 GHz.
- We are now performing the optical characterization of Ti-Al LEKID.
- In the same time, we are developing LEKIDs for the D-Band (110 ÷ 170 GHz).

化压力 化压力

Conclusions

- Our purposes are to design, fabricate and test LEKIDs able to work in the W-Band (75 \div 110 GHz).
- We tested prototype with different Al thickness (40 and 80 nm): these are not suitable to cover the whole W-band.
- The use of Ti-Al bi-layer allows us to cover frequencies greater than 60 GHz.
- We are now performing the optical characterization of Ti-Al LEKID.
- In the same time, we are developing LEKIDs for the D-Band (110 ÷ 170 GHz).

法国际 化原油

Conclusions

- $\bullet\,$ Our purposes are to design, fabricate and test LEKIDs able to work in the W-Band (75 $\div\,$ 110 GHz).
- We tested prototype with different Al thickness (40 and 80 nm): these are not suitable to cover the whole W-band.
- The use of Ti-Al bi-layer allows us to cover frequencies greater than 60 GHz.
- We are now performing the optical characterization of Ti-Al LEKID.

 In the same time, we are developing LEKIDs for the D-Band (110 ÷ 170 GHz).

化原因 化原因

Conclusions

- $\bullet\,$ Our purposes are to design, fabricate and test LEKIDs able to work in the W-Band (75 $\div\,$ 110 GHz).
- We tested prototype with different Al thickness (40 and 80 nm): these are not suitable to cover the whole W-band.
- The use of Ti-Al bi-layer allows us to cover frequencies greater than 60 GHz.
- We are now performing the optical characterization of Ti-Al LEKID.
- In the same time, we are developing LEKIDs for the D-Band (110 ÷ 170 GHz).

2