

Sensing & Control of the Advanced Virgo experiment

Diego Bersanetti, Gianluca Gemme, Bas Swinkels

101st SIF National Congress, Sapienza - University of Rome

September 25th, 2015

< D >

GWs ●		Advanced Virgo 000		
Grav	vitational W	Vaves		

• Perturbative wave-like solutions to Einstein's equations:

$$\mathbf{g} = \eta + \mathbf{h}$$
, $|h_{\mu\nu}| \ll 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

<ロ> (日) (日) (日) (日) (日)

э

GWs ●		Advanced Virgo 000		
C	• • 1 3 3			

Gravitational Waves

• Perturbative wave-like solutions to Einstein's equations:

$$\mathbf{g} = \eta + \mathbf{h}$$
, $|h_{\mu\nu}| \ll 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$

• Using the quadrupole approximation, the amplitude is:

$$h_{\mu\nu} = \frac{2G}{c^4} \cdot \frac{1}{r} \cdot \frac{d^2 Q_{\mu\nu}}{dt^2}$$

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

GWs ●		Advanced Virgo 000		
a	• • 1 3 3			

- Gravitational Waves
 - Perturbative wave-like solutions to Einstein's equations:

$$\mathbf{g} = \eta + \mathbf{h}$$
, $|h_{\mu\nu}| \ll 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$

• Using the quadrupole approximation, the amplitude is:

$$h_{\mu\nu} = \frac{2G}{c^4} \cdot \frac{1}{r} \cdot \frac{d^2 Q_{\mu\nu}}{dt^2}$$

• Coalescing NS/NS in the Virgo cluster ($r \sim 10 \,{\rm Mpc}$): $h \simeq 10^{-21}$

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo ・ロト ・ 一下・ ・ ヨト・

GWs ●		Advanced Virgo 000		
a	• • 1 77			

- Gravitational waves
 - Perturbative wave-like solutions to Einstein's equations:

$$\mathbf{g} = \eta + \mathbf{h}$$
, $|h_{\mu\nu}| \ll 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h_{\mu\nu} = 0$

• Using the quadrupole approximation, the amplitude is:

$$h_{\mu\nu} = \frac{2G}{c^4} \cdot \frac{1}{r} \cdot \frac{d^2 Q_{\mu\nu}}{dt^2}$$

• Coalescing NS/NS in the Virgo cluster ($r \sim 10 \,{\rm Mpc}$): $h \simeq 10^{-21}$

The amplitude we are looking for is **extremely** small!

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

${ m GWs}$	Interferometry	Advanced Virgo		
	•0			

GW Detection through Interferometry (1)

Effect of a GW on an interferometer

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

・ 山 ・ ・ ・ ・ ・ 101st SIF Congress, Sapienza - Univ. of Rome

Э

${ m G}{ m Ws}$	Interferometry	Advanced Virgo		
	00			

GW Detection through Interferometry (2)

Michelson Interferometer

- Detection based on ΔL between arms
- $\Delta L \approx \frac{1}{2}hL$
- From quadrupole approximation, $h \simeq 10^{-21}$
- If $L \simeq 10^3$ m we have to measure $\Delta L \approx 10^{-18}$ m !

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

3/12

・ロト ・日下 ・ ヨア・

GWs	Interferometry	Advanced Virgo		
	00			

GW Detection through Interferometry (2)

Interferometer with Fabry-Pérot cavities

- ✓ Length-to-phase transduction is amplified:
 - Effective length $L' = L \cdot \frac{2\mathcal{F}}{\pi}$
 - Finesse: $\tilde{\mathcal{F}} = \frac{\pi R}{1-R}$
 - Maximised phase response
- Drawback: requires
 a resonant condition
 to work

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

G Ws o	Interferometry ⊙●	Advanced Virgo 000		

GW Detection through Interferometry (2)

Power-Recycled configuration

The idea is to *recycle* the wasted light:

- $\checkmark P_{\rm eff} \gg P_{\rm input}$ $(factor \sim 50)$
- ✓ Shot Noise reduced (factor ~ 7)
- \otimes Another resonant cavity to be controlled

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

${ m G}{ m Ws}$	Advanced Virgo		
	000		

The Virgo Experiment

101st SIF Congress, Sapienza - Univ. of Rome

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

${ m GWs}$	Advanced Virgo		
	000		

The 2nd generation: Advanced Virgo (1)

- 200 W laser
- Larger beam
- New optical layout
- Heavier mirrors
- Increased Finesse
- Upgraded Superattenuator
- Signal Recycling cavity

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

${ m GWs}$	Advanced Virgo		
	000		

The 2nd generation: Advanced Virgo (1)

- $200 \,\mathrm{W}$ laser
- Larger beam
- New optical layout
- Heavier mirrors
- Increased Finesse
- Upgraded Superattenuator
- Signal Recycling cavity

Developing a new Lock Acquisition scheme is mandatory!

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo (□) ★ (日) ★ (101 st SIF Congress, Sapienza - Univ. of Rome

GWs o	Advanced Virgo 00●		

The 2nd generation: Advanced Virgo (2)

Sensitivity: evolution in time

 $Sensitivity:\ different\ configurations$

< □ > < / →

G Ws o	Advanced Virgo 000	Lock Acquisition ●0	

Operation Conditions

- Uncontrolled mirrors move at the *micrometer* scale
- Error signals only valid at the *nanometer* scale
- Working accuracy is at the picometer scale

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

- - E - M-101st SIF Congress, Sapienza - Univ. of Rome

< 177 ▶

G Ws o	Advanced Virgo 000	Lock Acquisition ●0	

Operation Conditions

- Uncontrolled mirrors move at the *micrometer* scale
- Error signals only valid at the *nanometer* scale
- Working accuracy is at the picometer scale

This requires a complicated procedure known as Lock Accurisition

∜

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

101st SIF Congress, Sapienza - Univ. of Rome

GWs o	Advanced Virgo 000	Lock Acquisition ⊙●	

Lock Acquisition

- Error signals are available only *around resonance*
- Error signals are extracted at the output ports
- Error signals are used to compute correction signals
- Correction signals are sent to the optics

101st SIF Congress, Sapienza - Univ. of Rome

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

GWs 0	Advanced Virgo 000	Lock Acquisition ⊙●	

Lock Acquisition

- Once the ITF is locked on its operating point, the control scheme is optimized in order to reduce the control noise
- Use of less noisy error signals
- Use of more aggressive filters

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

G Ws 0	Advanced Virgo 000	Simulations ●00	

Simulations: requirements on actuation force

Study of the sensing noise and impact on actuators:

Electronic noise's impact vs. Force

D. Bersanetti, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

< 同 ▶

G Ws o	Advanced Virgo 000	Simulations ●00	

Simulations: requirements on actuation force

Study of the sensing noise and impact on actuators:

Electronic noise's impact vs. Displacement

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

< 1 →

GWs 0	Advanced Virgo 000	Simulations 0●0	

Simulations: the *Guided Lock* algorithm (1)

Evaluation of residual cavity velocity via optical signals:

Simulation of freely swinging cavity

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

Simulations: the *Guided Lock* algorithm (1)

Evaluation of residual cavity velocity via optical signals:

Error Signal vs. Cavity Velocity

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

< □ > < / →

Simulations: the *Guided Lock* algorithm (2)

Single impulse to reduce velocity & lock with transmission signal

Transmission lock of arm cavity (1)

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

< 同 >

Simulations: the *Guided Lock* algorithm (2)

Single impulse to reduce velocity & lock with transmission signal

Transmission lock of arm cavity (2)

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo 101st SIF Congress, Sapienza - Univ. of Rome

< 同 >

GWs 0		Advanced Virgo 000			Conclusions •		
Conclusions							

- The experimental apparatus is undergoing a significant update
- New challenges due to stricter operating conditions
- Efforts ongoing into characterization, simulations and development:
 - study of the new actuators
 - simulations of the new arm cavities
 - development of a new lock acquisition strategy

12/12

▲ 同 ▶ → 国 ▶

GWs 0		Advanced Virgo 000			Conclusions ●		
Conclusions							

- The experimental apparatus is undergoing a significant update
- New challenges due to stricter operating conditions
- Efforts ongoing into characterization, simulations and development:
 - study of the new actuators
 - simulations of the new arm cavities
 - development of a new lock acquisition strategy

2016 is the year of Advanced Virgo

<u>D. Bersanetti</u>, G. Gemme, B. Swinkels Sensing & Control of Advanced Virgo

12/12

< □ > < □ >