

THE WE SHE WE

101° CONGRESSO NAZIONALE SOCIETÀ ITALIANA DI FISICA ROMA 24 SETTEMBRE 2015

PIETRO DI GANGI

On behalf of the XENON Collaboration University of Bologna - INFN

Istituto Nazionale di Fisica Nucleare qi Lisica Nucleare and menter are

STUDY OF THE SENSITIVITY OF THE XENON1T EXPERIMENT WITH THE PROFILE LIKELIHOOD METHOD

XENON Detection Technique

The XENON1T experiment

XENON1T Sensitivity

Bi-dimensional statistical model **SIGNAL** WIMP-nucleon elastic scattering **BACKGROUND** ERs and NRs

Criteria of event selection

- Single scatter interaction
- Vertex of interaction inside the Fiducial Volume (1 ton)
- Deposited energy in the experimental search window [3,70] PE

SIGNAL and BACKGROUND models

2D statistical model

S1 distributions f_s, f_{bER}, f_{bNR}

Recoil energy spectra converted into S1 distributions (n° PE detected) through

- **Light Yield L_v** (n° y produced/keV)
- **Charge Yield Q**_v (n° e⁻ produced/keV)
- **Detector performance** (LCE, PMTs QE and CE)

Y distributions

Y is an idealized version of the discrimination parameter log₁₀(S2/S1)

- g_{ER} ER events Gauss(0,1)
- *q_{NR}* **NR** events *Gauss(-2.58,0.92)*

These distributions reproduce the XENON100 ER/NR discrimination and NR acceptance performance

NO discrimination cut on ER events (full data set used)

Total (ER + NR) Background in 1 ton ER background / da/ 10 / da/ neutron NR background Solar nu NR background WIMP, m = 10 GeV/ c^2 , σ = 2 10⁻⁴⁶ cm² events / 10 2 t·yr exposure $m_{\gamma} = 100 \text{ GeV/c}^2$ $\mu_{e} = 50$ (enhanced) $\mu_{hFR} = 258$ $\mu_{hNR} = 3.9$

Systematic uncertainty on \mathcal{L}_{eff}

- The **RELATIVE SCINTILLATION EFFICIENCY for NR** L_{eff} rules the light output of nuclear recoils in Xenon
- *L_{eff}* is the major **systematic uncertainty** for XENON1T; no experimental measurements below 3 keV

Sensitivity evaluation with the Profile Likelihood method

Likelihood function (unbinned, extended) Parameter of interest μ_s $-2\ln L(\mu_s, t) = 2\left[\mu_s(t) + \mu_{bER} + \mu_{bNR}(t)\right] - 2\sum_{i=1}^{N_{obs}} \left[\mu_s(t) f_s(S1_i) g_{NR}(Y_i) + \mu_{bER} f_{bER}(S1_i) g_{ER}(Y_i) + \mu_{bNR}(t) f_{bNR}(S1_i) g_{NR}(Y_i)\right] + t^2$

Exclusion test statistic Profile Likelihood ratio

 $L(\mu_s, \hat{t})$ is the *conditional* maximized likelihood $L(\hat{\mu}_s, \hat{t})$ is the *unconditional* maximized likelihood

Compute test statistic P.D.F.

 $rac{f(q_{\mu}|H_{\mu})}{f(q_{\mu}|H_{0})}$ under signal hypothesis H_{μ} under bkg-only hypothesis H_{o}

$$q_{\mu} = \begin{cases} -2\ln\frac{L(\mu_{s},\hat{t})}{L(\hat{\mu}_{s},\hat{t})} & \text{if } \hat{\mu}_{s} \leq \mu_{s} \\ 0 & \text{if } \hat{\mu}_{s} > \mu_{s} \end{cases}$$

Run hypotheses tests

- Generated 10⁴ MC toy experiments under H_o
- **Rejection test** of each signal hypothesis H_{μ} (different μ_s) using *med*[q_{μ} | H_{μ}] as observed test statistic q_{μ}^{obs}
- The significance of each test is given by the *p-value*

Sensitivity results PL vs LR

- The exclusion upper limit is the value of µ_s for which p'_s=10% (90% CL)
- Scan of the WIMP mass range [5,1000] GeV/c²
- The Likelihood Ratio method (no systematics) gives stronger limits, especially at low WIMP masses (huge impact of L_{eff} uncertainty)

Expected sensitivity of XENON1T

XENON1T Sensitivity in the nominal exposure 2 t.yr

Minimum at $m_{\chi} = 50 \text{ GeV}/c^2$ $\sigma = 1.2 \cdot 10^{-47} \text{ cm}^2$

XENON100 limit (2012) $2 \cdot 10^{-45} \text{ cm}^2$ at m_{χ} =55 GeV/c²

^[3] E. Aprile et al., *Phys. Rev. Lett.*, 109(181301), 2012

LUX limit (2013) 7.6.10⁻⁴⁶ cm² at m_{χ} =33 GeV/c²

^[4] D. Akerib et al., *Phys. Rev. Lett.*, 112(091303), 2013

10

PIETRO DI GANGI

Sensitivity as a function of the exposure time

XENON1T WILL IMPROVE UPON THE CURRENT LIMITS IN A WHILE!

Fixing 1 ton FIDUCIAL VOLUME

5 live-days of data acquisition to reach the current best limits 7.6.10⁻⁴⁶ cm²

XENON1T enlightening the Dark

Summary and conclusions

The PROFILE LIKELIHOOD METHOD allows to use the full data set (no hard cuts) and to naturally include systematics.

• XENON1T EXPECTED SENSITIVITY: minimum at $1.2 \cdot 10^{-47}$ cm² for $m_{\chi} = 50$ GeV/c² at 90% confidence level (using CL_s)

 With 1 t fiducial volume, XENON1T is expected to reach the WORLD'S BEST SENSITIVITY to SIWIMP-nucleon scattering in ~5 days of data taking.

THANKS FOR YOUR ATTENTION!

BACKUP SLIDES

Dark Matter evidences

First hint for Dark Matter existence: Zwicky's study of the Coma cluster of galaxies (1933) Total mass >> Mass of luminous matter

15

DARK MATTER is among us

MATTER in the Universe

- ~15% Baryonic matter
- ~85% Dark matter

DARK MATTER properties

- Very long-lived τ>2·10¹¹ yr
- Neutral
- Only gravitational and weak(?) interactions
- Non-relativistic COLD DARK MATTER scenario
- Non-baryonic
- Beyond Standard Model particles

WIMP Weakly Interacting Massive Particle

DM candidates naturally arise in theories **beyond SM**

SUSY, Extra Dimensions, ...

XENON1T overview

18

- 3.3 t total LXe: ~2 t as active volume (inside TPC);
 - ~1 t as shield; ~1 t Fiducial Volume
- ~1 m drift electric field (~500 V/cm); HV field (~50 kV)
- 248 low radioactivity 3" PMTs
- ~720 m³Water Cherenkov Muon Veto (84 8" PMTs)

XENON1T TPC

Sensitivity goal: σ ~10⁻⁴⁷ cm²

Status: Commissioning and first science run by the end of 2015

A different parameterization of \mathcal{L}_{eff}

• Sensitivity curve with **uniform uncertainty** on \mathcal{L}_{eff}