Modeling of Electron Recoils in XENON100 with Monte Carlo Simulations

Federica Agostini 24-09-2015

101° Congresso SIF, Rome September 21-25, 2015

The XENON project

See talk by F.V. Massoli

- Low event rate expected
- Necessity to reduce the background
 - Nuclear Recoil (NR) background
 - \rightarrow spontaneous fission, (α ,n) reactions, μ -induced neutrons, ν coherent scatterings
 - Electron Recoil (ER) background
 - \rightarrow material contaminations, intrinsic sources
- Why do we want to model the ERs?
 - discrimination between ER/NR bands
 - use the MC as calibrating system in XENON1T

Bottom PMT Array

Modeling ERs with NEST

Noble Element Simulation Technique:

- collection of constants obtained by fitting experimental up-to-date results
- converts the energy deposited by a particle hitting a LXe detector, into light and charge

How does it work?

- energy E released in the detector converts itself into quanta $N_q {=} N_{\rm exc} {+} N_{\rm ion}$
- N_q~Gauss(73 E, √0.03 73 E) µ=73 quanta/keV, Fano factor F=0.03
 - N_{exc} ~Binom(N_q , N_{exc}/N_q) N_{exc}/N_{ion} =0.055
 - $N_{ion} = N_q N_{exc}$
 - N_{rec}: part of N_{ion} recombines itself (*Doke-Birks* model); for short tracks the *Thomas-Imel* model is used
- light: $N_y = N_{exc} + N_{rec}$
- charge: $N_e = N_{ion} N_{rec}$

Monte Carlo simulation

• NEST has been implemented in the XENON100 Monte Carlo code

- conversion of light/charge from NEST into S1 and S2 signal: pdf related to the detector
- we want to validate NEST by comparing the MC products with the data from XENON100 calibrations

AmBe calibration: MC-Data matching

- ¹²⁹Xe and ¹³¹Xe isotopes: part of target mass
- a neutron from AmBe source can interact via inelastic scattering with the LXe target, which in turn activates itself and emits
 - 39.6 keV line –> from ¹²⁹Xe isotope
 - 80.2 keV line –> from ¹³¹Xe isotope
- the detector responds with S1 and S2 signals, anti-correlated and Gaussian distributed
- same cuts to select the lines in both MC and Data
 - \rightarrow single scatter, 40 kg fiducial volume, S2 threshold
- analysis of ~5 live days

		μ_{Fit} S1 (pe)	σ_{Fit} S1 (pe)	μ_{Fit} S2/100 (pe)	σ_{Fit} S2/100 (pe)	$ heta_{Fit}$ (deg)	Rate (x10 ⁻³ n/s)
40 keV	МС	113.91±0.11	24.05±0.10	81.47±0.10	10.95±0.05	140.8±0.2	116±5
	Data	117.66±0.09	19.81±0.07	84.30±0.06	10.91±0.04	159.7±0.2	116.2±1.6
	Discrepancy	-3%	21%	-3%	0.4%	-12%	0.3%
80 keV	МС	200.1±0.3	44.4±0.4	196.7±0.3	15.06±0.10	134.9±0.2	73±4
	Data	220.0±0.2	36.3±0.3	189.6±0.2	18.75±0.13	142.4±0.4	48.6±1.2
	Discrepancy	-9%	22%	4%	-20%	-5%	50%

- good agreement for the S1 and S2 average
- for the MC case the rotation angle is almost constant in both the lines, as expected in absence of further interactions
- the rate of inelastic scattering with ¹²⁹Xe isotope shows a very good match

Federica Agostini

S1 and S2 projections inside the 2sigma contour

		S1 (pe)	S2/100 (pe)		
		Mean	RMS	Mean	RMS	
	МС	113.77±0.10	19.43±0.07	81.64±0.09	16.75±0.06	
40 keV	Data	117.56 ± 0.08	18.55±0.06	84.30±0.05	11.69±0.04	
	Discrepancy	-3%	5%	-3%	43%	
	МС	199.0±0.2	32.13±0.15	198.2±0.2	32.13±0.15	
80 keV	Data	220.0±0.2	30.71±0.15	190.19±0.18	26.64±0.13	
	Discrepancy	-10%	5%	4%	21%	

very good agreement between MC and Data

0.022

0.018 0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.002

Bayesian approach

- ER background reconstruction using known parameters Ξ $\rightarrow \mathcal{L}(\Xi) = p(\{S1^{obs}, S2^{obs}\}|\Xi) = p(S1^{obs}|\Xi)p(S2^{obs}|\Xi)$
- *photon yield* (m_j and s_j) per unit of energy E_j as input parameter, from NEST \rightarrow draw N_y from $p(N_{\gamma}|\Xi) = \mathcal{N}_{N_{\gamma}}(m_j E, s_j E)$

- why Bayesian approach? test the low energy region of interest (E< 50 keV)
- we firstly have to validate the method
 → comparison with known results

Testing the Bayesian approach

• test on 1000 events of 40 keV ERs

very good agreement between the S1 and S2 average values, their spread and the anti-correlation

 \rightarrow we can consider the procedure properly validated

Conclusions

- XENON is a low event rate experiment, thus the background (ER and NR) needs to be under control
- MC description of ERs using NEST
 - comparison with AmBe calibrations
 - good agreement for the S1 and S2 average
 - the rate of inelastic scattering with ¹²⁹Xe isotope shows a perfect matching
- statistical description of ERs with Bayesian approach
 - comparison with 40 keV ERs from the above MC
 - very good agreement between S1 and S2 average, spread and anti-correlation

Backup slides

101° Congresso SIF, Rome

Federica Agostini

11

Evidences of Dark Matter

- best candidate: WIMP (*Weakly Interacting Massive Particle*)

101° Congresso SIF, Rome

Federica Agostini

Plank Collaboration.

Astron.Astrophys. 571 (2014) A1

Expected Dark Matter rate

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_{teor}^p}{2\mu_p^2 m_\chi} A^2 F\left(q\right)^2 \int_{v_{min}}^{v_{fuga}} \frac{\rho(\overrightarrow{v} + \overrightarrow{v}_{Sole})}{v} d\overrightarrow{v}$$

	Rate totale $(\cdot 10^{-4} \frac{n^{\circ} \text{ di eventi}}{\text{giorno} \cdot \text{kg}})$							
		$m_\chi({ m GeV})$						
	10	20	50	100	200	500	1000	10000
$0-100 \mathrm{keV}$	2.3	7.2	8.8	6.50	3.3	1.39	0.77	0.078
$10-50{ m keV}$	0	0.59	3.63	3.09	1.83	0.789	0.402	0.041
$30-50{ m keV}$	0	10^{4}	0.38	0.55	0.38	0.173	0.089	0.0092

101° Congresso SIF, Rome

XENON: dark matter experiment

The XENON project

- XENON10
 - activity: 2005-2007
 - 25 kg fiducial mass
 - results: $\sigma_{sl} < 8.8 \ 10^{-44} \text{ cm}^2 (m_x = 100 \text{ GeV})$
- XENON100
 - activity: 2008-now
 - 161 kg fiducial mass
 - results: $\sigma_{sl} < 2.10^{-45} \text{ cm}^2 (m_x = 55 \text{ GeV})$ and $\sigma_{sd} < 3.5.10^{-40} \text{ cm}^2 (m_x = 45 \text{ GeV})$
- XENON1T
 - activity: under construction
 - 3300 kg fiducial mass
 - goal: $\sigma_{si}^{2} < 1.2 \ 10^{-47} \ cm^{2}$

Detection technique

- dual phase Time Projection Chamber (TPC)
 - S1: primary scintillation in LXe
 - S2: secondary scintillation in Gxe
- impinging particles:
 - WIMPs (or n) scattering off Xe nuclei \rightarrow NRs
 - e⁻, γ scattering off electrons \rightarrow ERs \rightarrow S2/S1_{NR}<<S2/S1_{ER}

101° Congresso SIF, Rome

Federica Agostini

ER/NR discrimination

99.75% discrimination for ER, 40% acceptance for NR

MC estimation of the background in XENON1T:

- 130±10 ev/year \rightarrow ER
- $1.1\pm0.2 \text{ ev/year} \rightarrow \text{NR}$

Federica Agostini

Detector response - details

Once known (from NEST) $N_v - and N_e$:

S1

 $L(S1|N_{_{Y}})=\Sigma_{_{Npe}}p(S1|N_{_{PE}})p(N_{_{PE}}|N_{_{Y}})$

- $p(S1|N_{PE})=p_{PMT}(S1|N_{PE})=Gauss_{S1}(N_{PE},0.5\sqrt{N_{PE}})$ 0.5 is the average single PE resolution of the PMTs
- $p(N_{PE}|N_{\gamma})=Binom_{Npe}(N_{\gamma},<\mu>)$ $\mu = LCE \times QE$ is the photon detection efficiency

S2

 $L(S2|N_e)=\Sigma_{Ng}p(S2|N_g)p(N_g|N_e)$

- $p(S2|N_g)=p_{PMT}(S2|N_g)=Gauss_{S2}(\mu_0N_g,\sigma_0\sqrt{N_g})$ $\mu_0(\sigma_0)$ is the average (spread) of the secondary scintillation gain
- $p(N_g|N_e)=Binom_{Ng}(N_e,exp\{-t_d/T_e\})$ t_d is the drift time and T_e the electron lifetime

Bayesian approach

Checking the anti-correlation

Detector response: values used

$\langle \mu \rangle$	0.0607			
μ_0	19.7			
σ_0	7			
t_d	1500/1.7			
$ au_e$	500			

QE x LCE – spatially average photon detection efficiency secondary scintillation gain: mean secondary scintillation gain: sigma drift time ($\Delta z/vd$) electron lifetime