

Fabio Valerio Massoli

Monte Carlo estimation of the C XENON1T experiment electromagnetic and nuclear recoil background

Fabio Valerio Massoli

University of Bologna and INFN

on behalf of the XENON Collaboration

First evidences for DM come from the Zwicky studies on the Coma Cluster

Since then, other experimental observations sustained the DM hypothesis:

101th Congresso SIF, *September 21 - 25, 2015*

The XENON collaboration

Fabio Valerio Massoli

The XENON project

XENON10

XENON100

XENON1T

XENONnT

101th Congresso SIF, *September 21 - 25, 2015*

With XENON "eyes"

101th Congresso SIF, *September 21 - 25, 2015*

The XENON1T experiment

Few main characteristics:

- Total LXe mass: ~ 3.3 tonnes Total LXe active volume: 2 tonnes Fiducial volume: ~ 1 tonne;
- > 248 3" PMTs Hamamatsu R11410-21, 35% average QE;
- field shaping rings produce a uniform drift field (0.5 1.0 kV/cm)
- > O(10 kV/cm) electrons extraction field

The XENON1T experiment: current status

STEP 1: construct detector geometry

An overview of the whole TPC geometry

STEP 1: construct detector geometry

STEP 1: construct detector geometry

Fabio Valerio Massoli

STEP 2: identify background sources

STEP 3: run the simulation & analyze the output

STEP 3: run the simulation & anaylize the output

Fabio Valerio Massoli

STEP 3: run the simulation & anaylize the output

Single elastic scatterings are indistinguishable from the WIMP signal

Fast neutrons (mean free path: tens of cm) can produce a single scatter into the LXe active volume

Cosmogenic neutrons (up to tens of GeV) from muon interactions with the rocks and detector materials. Thanks to the Muon Veto system of XENON1T their contribution to the NR background is $\leq 0.01 \text{ ev/y}$, i.e. negligible

Neutrino coherent scattering can also give single scattering nuclear recoils that can mimic WIMP interactions

STEP 4: estimate the background (before conversion)

ER background assuming ER/NR discrimination level of 99.75%

Source	Expecetd events ([2, 12] keV and 1 tonne-year)
materials	0.07 ± 10%
²²² Rn (1µB/kg)	0.08 ± 20%
⁸⁵ Kr	0.07 ± 20%
ν_{\odot}	0.08 ± 2%
¹³⁶ Xe	0.02 ± 50%
Total	0.32 ± 0.03

NR background assuming an acceptance level, for nuclear recoils, of 40%

CNNS* given the very steep spectrum of NR from CNNS, its contribution must be evaluated after the conversion into S1, because of Poisson fluctuations above threshold

STEP 4: estimate the background (after conversion)

ER have been **converted** from energy to **S1** signal through the use of the **NEST** toolkit

NR have been converted using the L_{eff} and the Q_y obtained via MC - data comparison (Phys. Rev. D88 (2013) 012006)

We assumed 99.75% ER/NR discrimination and 40% NR acceptance

Source	Background in [3, 70] PE (ev. / ton /y)
ER (materials + intrinsic + solar v)	0.32
NR from radiogenic neutrons	0.22
NR from neutrino coherent scattering	0.23
Total	0.77

Fabio Valerio Massoli

Conclusion

- in [5, 50] keVr and in 1 tonne fiducial volume the main contributions to the NR background comes from radiogenic neutrons from detector materials and from CNNS
- ✓ given the very steep spectrum of NR from CNNS, its background contribution must be evaluated after the conversion into S₁, because of Poisson fluctuations above threshold
- ✓ thanks to the use of the Muon Veto, the background contribution of muon-induced neutrons is ≤ 0.01 ev/y, i.e. negligible
- ✓ in [2, 12] keV and in 1 tonne fiducial volume the main contributions to the ER background come from ²²²Rn, solar neutrinos and ⁸⁵Kr
- in [2, 12] keV and for fiducial volumes larger than 1400 kg, the background from detector materials becomes dominant
- in the energy range [20, 300] keV, in 1 tonne fiducial volume, the 2v2β decay of the ¹³⁶Xe becomes dominant while above 300 keV, the detector materials give the highest contribution
- ✓ in [3,70] PE, assuming a discrimination level for ER of 99.75% and a 40% acceptance for NR, the XENON1T background in 1 tonne FV is:

 $(0.55 \pm 0.05) \text{ ev}/(t^*y)$

✓ in [3,70] PE, the XENON1T background from CNNS, in 1 tonne FV, is:

 $(0.23 \pm 0.05) \text{ ev}/(t^*y)$

Conclusion

- in [5, 50] keVr and in 1 tonne fiducial volume the main contributions from radiogenic neutrons from detector materials and from CNP
- thanks to the use of the Muon Veto, the background cor
 0.01 ev/y, i.e. negligible
- given the very steep spectrum of NR from after the conversion into S1, because
- in [2, 12] keV and in 1 tonne fird
 from ²²²Rn, solar neutrip
- ✓ in [2, 12] keV and becomes do

✓ in tb

in

round comes

trons is ≲

lated

ckground come

-sround from detector materials

rials give the highest contribution rel for ER of 99.75% and a 40% acceptance for NR, the

 $(0.55 \pm 0.05) \text{ ev}/(t^*y)$

TONIT background from CNNS, in 1 tonne FV, is:

1S:

 $(0.23 \pm 0.05) \text{ ev}/(t^*y)$

Fabio Valerio Massoli

STEP 2: identify background sources

Fabio Valerio Massoli

STEP 4: estimate the background

Fabio Valerio Massoli

STEP 4: estimate the background

XENON100 RUN10 results (2012 - 2014)

Fabio Valerio Massoli

23

XENON100 latest results (2015)

DAMA/LIBRA experiment observes annual modulation interpretable as due to leptophilic DM particles

From XENON100 data (PL), it is excluded DM coupling to electrons, through axial-vector interactions, with $\sigma \ge 6 \cdot 10^{-35} \text{ cm}^2$ for WIMP masses above 2 GeV/c²

Unbinned PL analysis of ER data testing periodic signal hypotheses against null hypothesis (A=0)

Fixing a period of 1 year:

- **Standard DM halo phase is disfavored by 2.5σ**
- Assuming A V coupling of WIMPs to electrons,
 DAMA/LIBRA annual modulation is excluded at 4.8 σ

