Ricerca di Nuova Fisica in stati finali con due jet adronici in collisioni alla frontiera dell'energia con l'esperimento ATLAS a LHC

Marco Vanadia

Sapienza University of Rome & INFN

22 Settembre 2015, 101° Congresso SIF

LHC Run-2

- LHC restarted at 13 TeV!
- First runs with 20 MHz bunch crossing, then started with design 40 MHz
- $\approx 650 \ \mathrm{pb}^{-1}$ data recorded

Early program

- Re-commission for the detector
- Performance assessment
- High σ SM measurements
- Explore final states at the high-mass frontier

Main topic of this talk

New ATLAS 13 TeV di-jet result: ATLAS-CONF-2015-042

Search for new physics in di-jet events

- Events with two-jets systems with a high invariant mass m_{jj}
- High SM di-jet cross section exponentially decreasing as a function of m_{jj}
- Allow for searches at the energy frontier with very early data!
- \bullet Require complete understanding of jet reconstruction \rightarrow challenging at the very beginning of a new run

- Parton luminosities greatly enhanced when 8 \rightarrow 13 TeV
- New physics tipically scales faster than SM due to threshold effects

W.J. Stirling, http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Search for new physics in di-jet events

- $\bullet\,$ Jet pairs produced mainly via $2 \rightarrow 2$ partons interactions
- Many models introduce new resonances or topology modifications wrt SM^{1,2}
 - Excited quarks
 - Quantum Black Holes
 - W', Z'
 - ...
- Model-independent search can be performed, as well as search for benchmark models

¹R. M. Harris and K. Kousouris, Searches for dijet resonances at hadron colliders, Int. J. Mod. Phys. A26 (2011)

 2 N. Boelaert and T. Åkesson, Dijet angular distributions at $\sqrt{s}=$ 14 TeV,Eur. Phys. J. C66 (2010) 343–357

New analysis on 80 ${
m pb}^{-1}$ early Run-2 data: ATLAS-CONF-2015-042

- Events selected with single-jet trigger requiring $p_T > 360 \text{ GeV}$
- Jets reconstructed with a anti- k_T algorithm with a distance parameter R = 0.4
- Leading jet p_T >410 GeV, in the plateau of the trigger ($\epsilon_{trigger}$ \geq 99.5%)
- Sub-leading jet p_T >50 GeV

Topology

- Lorentz-invariant semi-difference between the rapidities of the jets $y^* = (y_1 y_2)/2$ used to describe event topology
- Angular distribution described by $\chi = e^{2|y^*|} = \frac{1 + \cos \theta^*}{1 \cos \theta^*}$
 - χ distribution is flat for the dominant $t-{\rm channel}$ in SM QCD
 - $\bullet~s-{\rm channel}~{\rm SM}~{\rm QCD}$ and many new physics models enhance low- χ region
- Boost of the system is described by $y^B = (y_1 + y_2)/2$

Specific cuts are applied for the resonant and angular searches, in order to avoid bias from selection above and to reduce the SM QCD contribution

Resonant search	Angular search
• <i>m_{jj}</i> >1.1 TeV	• <i>m_{jj}</i> >2.5 TeV
• $ y^* < 0.6$ (i.e. $\chi < 3.3$)	• $ y^* <$ 1.7 (i.e. $\chi <$ 30.0), $ y_B <$ 1.1

Resonant search

- QCD spectrum can be described by $f(z) = p_1(1-z)^{p_2}z^{p_3} + p_4\log z$ with $z = m_{jj}/\sqrt{s}$
- With available data, description with p₄ = 0 is still reliable, 3-parameters function is used
- Possible biases due to BSM contribution are removed by excluding contiguous range of bins if they have excesses which leads to poor fit χ²
- Final fit result has a probability = 0.45
- Search for resonances performed with the BumpHunter¹ algorithm, larger discrepancy found @ 2.91-3.17 TeV, not significant
- Predictions for 4 and 5 TeV Quantum black Holes by BlackMax MC generator are shown in the Figure

ATLAS-CONF-2015-042

Highest measured m_{jj} =5.2 TeV

¹CDF Collaboration, T. Aaltonen et al., Phys. Rev. D79 (2009) 011101; G. Choudalakis, arXiv: 1101.0390

Angular search

ATLAS-CONF-2015-042

- SM QCD described by simulated data: Pythia 8 (LO)
- QCD NLO corrections by NLOJET++ as a function of m_{jj} , χ (max. corr. 15%)
- Applied also EW corrections¹ (max. corr. 3%)
- χ distribution compared for SM only and SM + Quantum Black Hole (6.5 TeV) hypotheses
- Data compatible with SM only hyp., with a $p(\chi^2)=0.57$

¹S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095

Resonant analysis

- Statistical uncertainties evaluated with pseudo-experiments (fitting pseudo-data drawn with Poissonian fluctuactions around nominal bkg)
- Function choice unc. assessed comparing with the 4-parameters fitting function results

Angular analysis

- MC simulation
 - biggest uncertainty is due to renormalization and factorization scales (up to 20% in a single bin)
 - PDF uncertainty are small (1% level)
 - Uncertainties on NLO corrections are small as well (<1%)
- Detector unc.: dominated by Jet Energy Scale (up to 9%)

ATLAS-CONF-2015-042

Results for Quantum Black Holes

- "ADD" model¹ is taken as a benchmark scenario
- In the model the scale of quantum gravity M_D is at a few TeV
- Therefore LHC could produce black holes above a threshold $pprox M_D$
- $\bullet\,$ Limits are derived from data for an ADD scenario^2 with 6 dimensions and $M_{th}=M_D$
- Signal simulated with QBH and BlackMax generators

The results exclude signals up to $\approx\!6.5\text{-}6.8$ TeV, improving the Run-1 ATLAS and CMS results (5.0-6.3 TeV depending on model assumptions)

¹N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B429 (1998) 263–272;I. Antoniadis et al., Phys. Lett. B436 (1998) 257–263

²ATLAS Collaboration, Phys. Rev. D 91 (2015) 052007

Limits have been derived also for model-independent gaussian resonances for various hypotheses on the width

New results extend the range of the limits

¹ATLAS Collaboration, Phys. Rev. D 91 (2015) 052007

- New 13 TeV results for the search of new physics in di-jet events already public! ATLAS-CONF-2015-042
- The biggest challenge was to re-understand, measure and characterize the jet reconstruction in a new run, at a new energy regime, with 40 MHz collisions
- This goal has been achieved in a very short time
- $\bullet\,$ With the first 80 ${\rm pb}^{-1}$ of data already surpassed Run-1 sensitivity for specific Quantum Black Holes models

Outlook

- With more statistics, new benchmark models can be explored: excited quarks, contact interaction, ...
- There will be the opportunity also for improving the analysis:
 - angular search currently MC-based, constraining background in data could significanly reduce uncertainties

Kinematics distribution

