

Misura del momento trasverso mancante in ATLAS nel Run 2 di LHC a 13 TeV

Maria Giulia Ratti UNIVERSITÀ DEGLI STUDI DI MILANO E I.N.F.N.

101° CONGRESSO NAZIONALE SIF – ROMA

22/09/2015

	Con	gresso	SIF	201	15
--	-----	--------	-----	-----	----

What is E_{T}^{miss} ?

E_T^{miss} = Missing Transverse Momentum

- Negative *vector* sum of the *transverse* momenta of *all* detected particles
- ♦ Global quantity of the event
- \diamond The handle for the invisible part of the event

- New particles
- Neutrinos

 E_{T}^{miss} is the discriminating variable for many searches for new physics

Fake E_{T}^{miss} :

- Miscalibrations
- Mismeasurements
- Limited detector acceptance
- Detector Noise

Congresso SIF 2015

M.G. Ratti

Outline

In this talk:

 \diamond How we **reconstruct** the E_{T}^{miss} in Run 2

- * Reconstruction algorithm
- * E_{T}^{miss} variants

↔ How we *measure* its *performance* in 2015 data and MC

- Data/MC comparisons
- Resolution
- Scale and Linearity

E_T^{miss} Reconstruction: Ingredients

- ♦ Reconstructed and calibrated *"physics objects"*:
 - electrons, photons, taus, muons
 - Identified and selected as recommended from the various CP groups
 - * analyses can optimize the object quality and selections for their needs
 - Jets:
 - Fully calibrated EM+JES Anti-kt4 (i.e. with R=0.4) with p_T > 20 GeV and JVT cut, jet selection being optimized
 - Anti-kt4 with p_T > 7 GeV for handling the overlap between physics object, as every physics object (except muons) is reconstructed as a jet

♦ Signal objects:

• tracks and clusters

E_T^{miss} Reconstruction: Term by Term

'K 🏲 T

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss}, e} + E_{x(y)}^{\text{miss}, \gamma} + E_{x(y)}^{\text{miss}, \tau}$$
$$+ E_{x(y)}^{\text{miss}, \text{jets}} + E_{x(y)}^{\text{miss}, \mu} + E_{x(y)}^{\text{miss}, \text{Soft}}$$
$$E_{x(y)}^{\text{miss}, k} = -\Sigma_{k} p_{T}^{k}$$

♦ Reconstructed and calibrated *"physics objects"*:

- electrons, photons, taus, muons •
 - Identified and selected with fairly general criteria
 - Coherent choice between event selection and E_{τ}^{miss} selection is possible *
- Jets:
 - * Anti-kt4 with $p_T > 20 \text{ GeV}$

Unmatched *tracks* and *clusters* (= Core Soft Term)

+ *soft jets* with **7** *GeV* < *p*₇ < **20** *GeV*

E_T^{miss} Reconstruction: **Association Map**

⇒ There must be a mechanism to keep track of the overlaps between physics/signal objects:

- ♦ Run 1 Composition Map:
 - Contains links between each E_{T}^{miss} term and the physics objects / signals contributing to it with weights reflecting their kinematic contribution
 - Could be used to recalculate MET at analysis level if all topo-clusters and tracks and their links to physics objects are saved → resource heavy
- ♦ Run 2 Association Map:
 - Contains the spatial association of each physics object to anti-kt4 jets
 - Within each jet, object overlaps are identified
 - Unassociated tracks/clusters go into the core soft terms

Topocluster

E_T^{miss} Reconstruction: Soft Terms

Two *E*_T^{miss} variants depending on the Soft Term:

\diamond Track Soft Term => **TST E**^{miss}

- Fully calibrated physics objects
- Core tracks coming from the primary vertex unassociated to physics objects
- Tracks from primary vertex not associated to hard objects
 - ⇒ Pile-up suppressed
 - ⇒ Neutrals in Soft Term are lost
 - ⇒ Limited Tracker acceptance
- \diamond Calorimeter Soft Term => **CST E**_T^{miss}
 - Fully calibrated physics objects
 - Core clusters
 - Clusters belonging to jets between 7 and 20 GeV, no JVT cut
 - ⇒ Non Pile-up suppressed
 - ⇒ Neutrals in Soft Term are kept
 - ⇒ Full calorimeter acceptance

One variant using only tracking information for both hard and soft terms:

- \diamond **Track** E_T^{miss}
 - Fully calibrated electrons and muons, jets only from tracks
 - TST Soft Term
 - ⇒ Very pile-up suppressed
 - ⇒ Neutrals are lost
 - ⇒ Limited Tracker acceptance

E_T^{miss} **Performance: Topologies**

E_T^{miss} magnitude and direction are very topology-dependent:

• with expected small or null E_T^{miss} , used as standard candles

♦ W → Iv

• with expected significant E_{T}^{miss} coming from the hard scatter

♦ ttbar

• busier events with expected significant E_{T}^{miss}

♦ Further categorization in jet multiplicities is an important discriminant

TST *E*_T^{miss} Performance: *Data/MC*

 \Rightarrow Agreement between data and MC with very first data, Z $\Rightarrow \mu\mu$ events

M.G. Ratti

ATLAS-PHYS-PUB-2015-027

E_T^{miss} **Performance:** *Resolution*

- \diamond Width of the $E_{x,y}^{\text{miss}}$ is a sensitive quantity to pile-up effects
- ♦ Measured as a function of pile-up correlated quantities:
 - number of primary vertices, N_{PV}, (left)
 - $\Sigma E_T = \Sigma_k p_T^k$ reconstructed *scalar* sum of all particles p_T

 \diamond In 0-jet events TST and Track E_{T}^{miss} perform very similar, insensitive to pile-up

- \diamond Same behaviour as a function of N_{PV} or TST ΣE_T
- Very similar behaviour between Z and W topologies

E_T^{miss} **Performance:** *Resolution*

\Leftrightarrow W $\rightarrow \mu v$ inclusive jets (left), ttbar inclusive jets (right)

- In inclusive jet events, all variants suffer by the increased event activity in higher pile-up regions
- TST and CST show similar values of the resolution among various topologies, while Track resolution suffers in high-jet multiplicity events

E_{T}^{miss} Performance: Scale in Z \rightarrow II

- ♦ Well calibrated E_T^{miss} in Z→II events projected along any axis should be zero:
- Projection of the E_T^{miss} onto the Z axis is sensitive to the imbalance between Hard and Soft part of the event

♦ Bias is bigger in 0-jet events indicating underestimation of the soft term
 ♦ In events with jets, TST E_T^{miss} performs best

E_{T}^{miss} Performance: Scale in $W \rightarrow Iv$

- \diamond In W \rightarrow *lv* events "genuine" E_{T}^{miss} is expected
- ♦ Scale is measured with the linearity as a function of the $E_T^{\text{miss, True}}$

linearity = $\left\langle \frac{E_{\rm T}^{\rm miss} - E_{\rm T}^{\rm miss, True}}{E_{\rm T}^{\rm miss, True}} \right\rangle$

Linearity = 0 is expected if the reco scale is equal to the true scale

♦ At low E_T^{miss, True} a positive bias is expected
 ♦ At high E_T^{miss} TST and CST similar, Track E_T^{miss} worse due to loss of neutrals

Conclusions

- $ext{ } E_{T}^{\text{miss}}$ reconstruction well tested in Run 2
- Most promising calculation based on fully calibrated physics objects + tracks for the soft part
- ♦ Well understood performance at 13 TeV in MC simulations
- ♦ First data/MC comparisons show very good agreement
- MC-based systematic uncertainties already calculated, data-based expected with higher statistics

Congresso SIF 2015

References

[1] Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at Vs = 13 TeV ATLAS Collaboration, ATLAS-PHYS-PUB-2015-027

[2] Expected Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at $\sqrt{s} = 13$ TeV ATLAS Collaboration, ATLAS-PHYS-PUB-2015-023

TST *E*_T^{miss} : *Resolution and Scale in 2015 data and MC*

♦ Agreement between data and MC with very first data, Z → $\mu\mu$ events

TST *E*_T^{miss} Performance: *Data/MC*

 \diamond Agreement between data and MC with very first data, W \rightarrow events

E_T^{miss} Performance: *Scale in ttbar*

- \diamond In ttbar events "genuine" E_{T}^{miss} is expected
- ♦ Scale is measured with the linearity as a function of the $E_T^{\text{miss, True}}$

Linearity = 0 is expected if the reco scale is equal to the true scale

♦ At low E_T^{miss, True} a positive bias is expected
 ♦ At high E_T^{miss} TST and CST similar, Track E_T^{miss} worse due to loss of neutrals

Soft term systematics: Soft Term Projections

Soft Term projections onto p_T^{hard}:

- Mean of longitudinal component
 => scale uncertainty
- RMS of transverse and longitudinal components
 - => resolution uncertainty

Soft term systematics: Soft Term Projections

HCW 2015

Track E_T^{miss} systematics

- One additional component of uncertainty considered for Track E_{τ}^{miss} \diamond
- Tracks associated to calorimeter jets, not entering Soft Term \diamond
- **Considered effects:** \diamond
 - MC generator modelling
 - Effects of material modelling
 - **JES/JER**

 \diamond Relative variation of R, defined for each jet, is used as observable to describe the systematic variations, as a function of η and p_{τ} of the jet

300

 E_{T}^{miss} = reconstructed E_{T}^{miss}

 $E_{x,y}^{miss} = components$

 $E_{T}^{\text{miss,True}}$ = the missing transverse momentum at true level, including all noninteracting particles

 $\Sigma E_T = \Sigma_k p_T^{\ k}$ reconstructed *scalar* sum of all particles p_T pile-up correlated quantity