

Dynamic response of magnetocaloric materials

M. Solzi, G. Porcari, F. Cugini

DiFeST - Dipartimento di Fisica e Scienze della Terra Università di Parma, Italy

Energy and environment

- General problem of energy conversion
- Refrigeration: food conservation, household appliances
 - 25% of residential and 15% of commercial power consumption
- Constraints: Montreal (1987), Kyoto (1997) protocols
 - Present technologies: vapour compression cycles with
 - ozone depleting gases (CFCs, HCFCs)
 - greenhouse gases (CFCs, HCFCs, HFC)

EU HFC Phase-Down schedule

A promising alternative: a green technology

- Energy conversion (cooling) based on the magnetocaloric effect near RT:
 - No harmful gases involved, low pressure
 - Compactness (solid-state materials), low noise
 - Better efficiency? Maybe 60% theor. limit

K. Engelbrecht, et al., Int. J. Refrig. 2012

• «nearly-commercial» prototypes

Magnetocaloric materials

- «Classic» materials: Gd \Rightarrow reference
 - Curie transition
- «Giant» MC materials:
 - Magneto-structural transitions
 - 1st-order transitions
- Example of recent promising materials:
 - (1) Ch. Bahl, et al., Appl. Phys. Lett. 2012
 (2) T. Gottschall, et al. Appl. Phys. Lett. 2015
 (3) L. von Moos, J. Phys. D Appl. Phys. 2015
 (4) J. Lyubina, Adv. Mater. 2010
 (5) F. Guillou, et al., J. Appl. Phys. 2014

The end of the story?

- Good materials and working devices: thus are we at the end of the story?
- No, there are many open questions:
 - Materials:
 - Hysteresis of 1st order transitions
 - **Reproducibility** of thermomagnetic properties
 - Thermal conductivity, mechanical stability, ...
 - Devices:
 - Lower efficiency and power/temperature span, higher costs
 - \Rightarrow still promising but not imminent commercial applicability!

J. Steven Brown, P.A. Domanski, Applied Thermal Engineering 64, 252 (2014)

- "conventional" techniques:
 - Indirect:
 - $\Delta S_T(T, \Delta H)$ from magnetization curves

Measurement protocol:

L. Caron, et al., J. Magn. Magn. Mater. 321, 3559 (2009)

- "conventional" techniques:
 - Indirect:
 - $\Delta S_T(T, \Delta H)$ from magnetization curves
 - $\Delta S_T(T, \Delta H)$ and $\Delta T_{ad}(T, \Delta H)$ from magnetic Differential Scanning Calorimetry

Model:S. Jeppesen, et al., Rev. Sci. Instrum. 79, 083901 (2008)V. Basso, et al., Rev. Sci. Instrum. 81, 113904 (2010)

- "conventional" techniques:
 - Indirect:
 - $\Delta S_T(T, \Delta H)$ from magnetization curves
 - $\Delta S_T(T, \Delta H)$ and $\Delta T_{ad}(T, \Delta H)$ from magnetic Differential Scanning Calorimetry
 - Direct:
 - $\Delta T_{ad}(T, \Delta H)$ from adiabatic temperature change measurements

G. Porcari et al., Rev. Sci. Instrum., 84, 073907 (2013)

- "conventional" techniques:
 - Indirect:
 - $\Delta S_T(T, \Delta H)$ from magnetization curves
 - $\Delta S_T(T, \Delta H)$ and $\Delta T_{ad}(T, \Delta H)$ from magnetic Differential Scanning Calorimetry
 - Direct:
 - $\Delta T_{ad}(T, \Delta H)$ from adiabatic temperature change measurements
- Reproducibility of meas. for different samples (1st order transitions)
 - mass, shape, micro-strains, composition ...
- Importance of comparison of different techniques V. K. Pecharsky and K. A. Gschneidner, Jr, J. Appl. Phys., 90, 4614 (2001)

Iso-thermal entropy change: comparison

G. Porcari et al., Phys. Rev. B, 86, 104432 (2012)

Adiabatic temperature change: comparison

UNIVERSITÀ DEGLI STUDI DI PARMA

DIFEST PARTIMENTO DI FISICA E SCIENZE DELLA TERRA

G. Porcari et al., Phys. Rev. B, 85, 024414 (2012)

Thermomagnetic cycles

- Study of MCE in operating (dynamic) conditions
- Repeated thermomagnetic cycles

G. Porcari, et al., Rev. Sci. Instrum. 84, 073907 (2013)

Thermomagnetic cycles

G. Porcari, et al., Rev. Sci. Instrum. 84, 073907 (2013)

UNIVERSITÀ DEGLI STUDI DI PARMA

DIFEST PARTIMENTO DI FISICA E SCIENZE DELLA TERRA

Time constant of temperature change

- Comparison of materials with different thermal conductivity: composites
 - Different magnitude of the effect and different frequency

G. Porcari, et al., Int. J. Refrig., in press (2015)

Time constant of temperature change

- Time decay of the adiabatic branch: time constant τ
- Exponential best fit + average on hundreds of cycles
- Heat-transfer simulations (FEM)

G. Porcari, et al., Int. J. Refrig., in press (2015)

16

Time constant of temperature change

- τ represents the dynamic response of a MC material
 - Upper bound for max operating frequency
- Indirect information on the microstructure evolution with N. of cycles
 - mechanical stability \Leftrightarrow thermal conductivity

17

Non-contact measurements techniques

- Direct methods for measuring ΔT_{ad} based on **non-contact techniques**:
 - nearly-ideal adiabatic conditions;
 - thermomagnetic cycles at relatively high frequency (≈10 Hz);
 - samples with reduced thickness, like as thin sheets and ribbons (\rightarrow thin films)
 - Acoustic or optical detection of thermal radiation (low ac magnetic fields)

A. O. Guimarães, et al., Phys. Rev. B 80, 134406 (2009) J. Döntgen, et al., Appl. Phys. Lett. 106, 032408 (2015)

Non-contact techniques: an example

 $\begin{array}{l} p: \ 10^{-4} \ {\rm mbar} \\ 260 {\rm K} < T < 350 {\rm K} \\ \mu_0 H \ {\rm up \ to \ 2 \ T} \\ \tau_{magn} < 300 \ {\rm ms} \end{array}$

Response time: 27 ms

Surface emissivity: calibration

F. Cugini, et al., Rev. Sci. Instrum. 85, 074902 (2014)

Non-contact techniques: experiments

F. Cugini, et al., Rev. Sci. Instrum. 85, 074902 (2014)

UNIVERSITÀ DEGLI STUDI DI PARMA DIFEST DIPARTIMENTO DI FISICA E SCIENZE DELLA TERRA

Non-contact techniques: time scale of *H* change

UNIVERSITÀ DEGLI STUDI DI PARMA

DIFEST DIFINENTO DIFISICA E SCIENZE DELLA TERRA

F. Cugini, et al., Rev. Sci. Instrum. 85, 074902 (2014)

Thermal lensing (mirage effect)

Main autom Cape and Lange Baller Colors of Baller

Non-contact techniques: thermal lensing

Non-contact techniques: thermal lensing

Fast response time: < ms •

agreement with usual techniques for measuring ΔT_{ad}

F. Cugini, et al., submitted to Appl. Phys. Lett. (2015)

Conclusions

- Comparison of different techniques for characterization of MC refrigerants
- Nearly operating conditions: repeated cycles
- Dynamic response: time constant of temperature change
- Non-contact measurements: high frequency low mass materials
- Comparison of experimental data with heat transfer simulations

Acknowledgments

- F. Albertini, S. Fabbrici
- Istituto IMEM-CNR, Parma, Italy
- E. Brück, L. Caron, F. Guillou, N.H. van Dijk
- FAME, Technical University of Delft (the Netherlands)
- L. Cohen, K. Morrison, J. Turcaud
- Blackett Laboratory, Imperial College, London (UK)
- Loughborough University (UK)

• C. Felser

• Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden (Germany)

