

GEANT4 simulations of the n_TOF spallation source

<u>Cristian Massimi</u>, Sergio Lo Meo University of Bologna, INFN and ENEA

The n_TOF Collaboration

Roma, 21-25 settembre 2015

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

outline

- Introduction and Geometry
- Physics List
- MC simulation and resampling
- Results

Introduction

Neutron time-of-flight facilities

Neutron sources

In most applications it is important to know the **neutron flux**, and its **dependence on energy**, **spatial beam profile**, the **contamination of charged particles** and **gamma-rays** in the beam, and related background. In **time-of-flight facilities** it is of crucial importance to know the so-called **response function** (the time distribution of neutrons emerging from the target with a given energy).

Facility	Ref.	Туре	Particle Energy (MeV)	Target	Pulse width (ns)	Frequency (Hz)	Flight path length (m)
GELINA	[37]	e ⁻	80 - 140	U	1	40-800	10-400
KURRI (short pulse)	[38]	e ⁻	20 - 46	Ta	2, 5, 10, 22, 33, 47, 68, 100	1 - 300	10, 13, 24
KURRI (long pulse)		e ⁻	7 - 32	Ta	100 - 4000	1 - 100	10, 13, 24
nELBE	[35]	e ⁻	40	РЬ	0.01	500000	4
ORELA	[34]	e ⁻	140	Ta	2 - 30	1 - 1000	10 - 200
POHANG	[39]	e ⁻	75	Ta	2000	12	11
RPI	[40]	e ⁻	60	Ta	7 - 5000	500	10 - 250
J-PARC/MLF - ANNRI	[41, 42]	Р	3000	Hg	600	25	21, 28
LANSCÉ - MLNSC	[43, 44]	P	800	W	135	20	7 - 60
LANSCE - WNR	[43, 44]	Р	800	W	0.2	13900	8 - ^^ ^
n_TOF	[45]	Р	20000	РЬ	6	0.4	18

Introduction

n_TOF neutronproducing target

GEOMETRY: spallation target, coolant and moderator systems separated, the support structures and the concrete pit in which it is mounted.

2 SCORING PLANES: towards EAR1 and EAR2 (at the entrance of the beam pipe).

MODERATOR: borated water is made with 4.2% in weight of H_3BO_3 , with a ¹⁰B enrichment of 90%.

FRONT part: the proton entrance window is a cylinder, made of an aluminum alloy, known as AW5083, made of 93.35% AI, 4.5% Mg and 7 other elements from Si to Zn. The main part, with outer and inner radius of 35 cm and 20 cm respectively, and a length of 10 cm, contains cooling water.

TARGET part: spallation volume, made of Pb, surrounded by a layer of water, all in serted in the aluminum alloy container. The Pb block is a cylinder 30 cm in radius and 40 cm in length. It is made of a lead alloy with 99.974% Pb and traces of 37 chemical elements ranging from Li to U.

END part: 4 cm thick layer of borated water (moderator for EAR1)which contains 4.2 weight% of H_3BO_3 and enrichment of 95%, enclosed between two AI sheets 3 mm thickness, reinforced by an internal grid.

Physics List

Geant4 10.01 version (December 2014): FTFP_INCLXX_HP Physics List:

- Inelastic interaction of high-energy protons: the Fritiof model is used in Geant4 FTFP for simulation of the following interactions: hadron-nucleus at $P_{lab} > 3 - 4$ GeV/c, nucleus-nucleus at $P_{lab} > 2 - 3$ GeV/c/nucleon, antibaryon-nucleus at all energies, and antinucleus-nucleus.
- Intra-nuclear cascade: the Liège Intranuclear Cascade model INCL++ is suitable for the simulation of spallation reactions or light-ion-induced reactions, for reactions induced by nucleons with P_{lab} < 3 GeV/c.
- De-excitation: we have tried both the default <u>G4ExcitationHandler</u> model of INCL++ and ABLA model that was recognized as one of the best de-excitation model by the IAEA Benchmark of Spallation Models. We have also tried different Physics List (*QGSP, BERT, BIC*...)

HP: the NeutronHP model (E_n <20 MeV) simulates all reactions induced by neutrons using evaluated data libraries (G4NDL).

 $\Omega \sim 10^{-8} \text{ sr}$ 5x10⁶ protons \rightarrow 1 neutron

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

FLUX after Resampling - Simulation arbitrarily scaled ~20%

Results

FLUX after Resampling - Simulation arbitrarily scaled ~20%

Results

Resolution function, impact on resonances

The stochastic process of **moderation** inside the neutron-producing target causes a **broadening of** the **energy** distribution of neutrons reaching the experimental area at a given TOF.

Results – EAR2 / INFN

Results – EAR2

INTOF

Results – EAR2

/ Istituto Nazionale di Fisica Nucleare

INFN

Beam Profile

Cristian Massimi - <u>cristian.massimi@unibo.it</u> Sergio Lo Meo - <u>sergio.lomeo@enea.it</u>

www.unibo.it

Resampling

INFN

Equivalent distance

Istituto Nazionale di Fisica Nucleare

Results – EAR1

INTOF

Resolution function, comparison with FLUKA

