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Pressure [hPa]

The importance of polar stratospheric water vapour

* Stratospheric water vapour regulates cloud formation in the upper troposphere and is
involved in the surface temperature increasing measured in the last decades.
(Solomon et al., 2010)

* It can be used as a tracer to study the air mass dynamics and the exchanges between

troposphere and stratosphere (Holton et al., 1995).

* It has an important role in the seasonal ozone loss observed in the polar stratosphere.
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An indirect measurement: the microwave spectroscopy

Modelled microwave spectra at different alt tudes
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Benefits:

* The transition is between well populated states at typical stratospheric temperature
* We can take measurements during both day and night
* We can neglect the scattering due to aerosol and atmospheric molecules

* We can use low cost components to assembly the instrument
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An indirect measure: the microwave spectroscopy
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Disadvantages:

We can obtain information about
the vertical concentration profile
of the water vapour by measuring

its thermal emission.

* We need at least 6 hours of integration of our signal to grant a significant
signal to noise ratio

* We need an observation site characterized by a dry troposphere to
minimize the signal absorption.
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Key physical principles behind the measurement

Radiative transfer
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The spectrometer VESPA-22
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No need for cryogenic cooling

Theoretically we can retrieve H,0O vertical profile L

from 30 to 90 km of altitude
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The spectrometer VESPA-22
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The signal is channelled to the front end electronics by a parabolic mirror

The mirror can rotate to receive radiation from different angles.

The front end is composed by low noise amplifiers, a noise diode to calibrate the signal
and two mixers to shift the signal to lower frequencies.

The back end spectrometer converts the signal from the time to the frequency domain.

7/ 16



How to get the stratospheric signal: the balanced beams
technique
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The signal of our interest is very small compared to the tropospheric background signal.
In order to observe the stratospheric emission we compare the emission from two different

beams at different zenital angles and rescale our measurement by a scaling factor.
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How to get the stratospheric signal: the balanced beams

technique

Water Vapour Emission Line @ 22.235 GHz
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* By using this technique we remove gain nonlinearities from the spectrum
* Tropospheric opacity can change during the measurement. In order to average
several hours of data we need a Scaling Factor to normalize the measured spectra

* In order to perform this techniqgue we assume a horizontally homogeneous sky
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Signal calibration

VS — (TS + Trec)
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To calibrate the observed spectra we use the known emission of noise diodes.

We calibrate the noise diodes by observing the emission from two black
body sources at known different temperatures (~77 K and ~300 K).
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From the measured spectrum to the concentration
vertical profile

* Water vapour vertical profiles can be obtained from our measurements by using the
indirect problem theory
* We employ an optimal estimation algorithm to retrieve the profile that has

the largest probability of generating the observed spectrum, given the local climatology
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The optimal estimation algorithm
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* We modify our apriori profile using the spectral information
* The Optimal Estimation can be seen as a weighted average of the apriori information
given by local climatology and the new information gathered with the measurement

* The matrix A can be used as an estimate of the vertical resolution and
sensibility interval of retrieved profiles 12 /16



A test measurement campaign at Campo
Imperatore (AQ)
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A test measurement campaign at Campo
Imperatore (AQ)
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Conclusions and things to do...

* \Vespa-22 is capable of retrieving vertical stratospheric water vapour profiles from 30
to 90 km altitude, but signal artifacts can reduce this range.

* It can operate automatically, with low level technical assistance and with a temporal
resolution of 2-4 measures/day, depending on weather conditions

* We are working on the instrumental setup to minimize signal artifacts

* The collected measurements will be studied to better understand the radiative and
dynamical processes that characterize the polar atmosphere.
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