Sezione d'urto della reazione ¹⁷O(p, α)¹⁴N come chiave di lettura della composizione di grani meteoritici

Sara Palmerini

²H(¹⁸O,α¹⁵N)n: n n р οα 18**O**

15**N**

+ ¹⁷O(p, α)¹⁴N fusion reaction measured by THM

ωγ (eV)	Sergi et al.2010 THM	Chafa et al. 2007	NACRE
65 keV	$3.4 \pm 0.6 \ 10^{-6}$	4.7±0.8·10 ⁻⁹	5.5 ^{+1.8} -1.0 ·10 ⁻⁹
183 keV	$1.16 \pm 0.1 \ 10^{-3}$	$1.66 \pm 0.1 \ 10^{-3}$	5.8 ^{+5.2} -5.8 ·10 ⁻⁵

S. Palmerini

+ ¹⁷O(p, α)¹⁴N fusion reaction measured by THM

ωγ (eV)	Sergi et al.2010 THM	Chafa et al. 2007	NACRE
65 keV	3.4 ± 0.6 10 ⁻⁶	4.7±0.8·10 ⁻⁹	5.5 ^{+1.8} -1.0 ·10 ⁻⁹
183 keV	$1.16 \pm 0.1 \ 10^{-3}$	$1.66 \pm 0.1 \ 10^{-3}$	5.8 ^{+5.2} -5.8 ·10 ⁻⁵

S. Palmerini

+ ¹⁷O/¹⁶O as a stellar thermometer

$$\frac{dY_{1^{7}O}}{dt} = Y_{1^{6}O}Y_{H}N_{A}\langle\sigma\nu\rangle_{1^{6}O(p,\gamma)^{1^{7}F}}\rho$$
$$-Y_{1^{7}O}Y_{H}N_{A}\left(\langle\sigma\nu\rangle_{1^{6}O(p,\gamma)^{1^{7}F}} + \langle\sigma\nu\rangle_{1^{6}O(p,\alpha)^{1^{4}}N}\right)\rho$$

Equilibrium conditions:

$$0 = Y_{{}_{16}}Y_{H}N_{A}\langle\sigma\nu\rangle_{{}_{16}}O(p,\gamma)^{17}F}\rho - Y_{{}_{17}}Y_{H}N_{A}(\langle\sigma\nu\rangle_{{}_{17}O(p,\gamma)^{18}F} + \langle\sigma\nu\rangle_{{}_{17}O(p,\alpha)^{14}N})\rho$$

$$Y_{{}_{16}}Y_{H}N_{A}\langle\sigma\nu\rangle_{{}_{16}O(p,\gamma)^{17}F}\rho = Y_{{}_{17}O}Y_{H}N_{A}(\langle\sigma\nu\rangle_{{}_{17}O(p,\gamma)^{18}F} + \langle\sigma\nu\rangle_{{}_{17}O(p,\alpha)^{14}N})\rho$$

$$\overline{\frac{Y_{{}_{16}O}}{Y_{{}_{17}O}}} = \frac{N_{A}\langle\sigma\nu\rangle_{{}_{17}O(p,\gamma)^{18}F} + N_{A}\langle\sigma\nu\rangle_{{}_{17}O(p,\alpha)^{14}N}}{N_{A}\langle\sigma\nu\rangle_{{}_{16}O(p,\gamma)^{17}F}}\rho$$

¹⁷O/¹⁶O equilibrium value depends on reaction rates and gives us information about the mixing depth

+ Nuclear physics of H-burning

+ Low mass star evolution: RGB and AGB phase

IRC+10216 C-star is the brightest object on the sky at at mid infrare S^{IF2015}

S. Palmerini

+ Red giant stars contribution to the galatic chemical evolution

Types of presolar grains

which can be isolated from meteorites in almost pure form by chemical and physical processing

 Table 1
 Types of presolar grains in primitive meteorites and IDPs

Grain type	Noble gas components	Size	Abundance ^{a,b}	Stellar sources	
Diamond	Xe-HL	2 nm	1400 ppm	Supernovae?	
Silicon carbide	Ne-E(H), Xe-S	0.1–20 μm	150 ppm	AGB, SNe, J stars, novae, born-again AGB	
Graphite	Ne-E(L)	1–20 μM	1−z ppm	Sive, AGB, born-again AGB	
Silicates in IDPs		0.2–1 μm	>1.5%	RG, AGB, SNe	
Silicates in meteorites		0.2–0.9 um	>220 ppm	RG. AGB. SNe	1
Oxides		0.15–3 μm	>80 ppm	RG, AGB, SNe, novae	
Silicon nitride		0.3–1 μm	\sim 3 ppb	SNe	
Ti, Fe, Zr, Mo carbides		10–200 nm		AGB, SNe	7
Kamacite, iron Mainstream ~93%	• AB grains 4–5%	\sim 10–20 nm		SNe	/

^aAbun Tarfees rains with meteorite type. XSI to in the ard Maximum values.

^bBecaese Youre in a set in the set of the

+ Oxide grains of AGB origin: HBB or CBP?

In conclusion, the measured ${}^{17}\text{O}/{}^{16}\text{O}$ ratio of grain OC2 (= $1.25 \pm 0.07 \times 10^{-3}$) could be reproduced within the large error bars of the NACRE compilation $(2.44^{+1.54}_{-1.78} \times 10^{-3})$ in models of massive AGB stars; however, the much more precise ${}^{16}\text{O}(\text{p},\gamma){}^{17}\text{F}$ rate of the present work leads to $2.52^{+0.88}_{-0.76} \times 10^{-3}$ for the ${}^{17}\text{O}/{}^{16}\text{O}$ ratio and disagrees with the measured value. Consequently, there is not clear evidence to date for any stellar grain origin from massive AGB stars. Stellar model uncertain-

temperture + Variation of the ${}^{14}N(p.\gamma){}^{15}\Theta$ eaction rate

+ Variation of the ${}^{14}N(p,\gamma){}^{15}O$ reaction rate

S. Palmerini

+ ¹⁷O+p reaction rates and Oxide grains

- N ass range of stellar progenitors of group 2 oxide grains is $1M_{\odot} < M_{\star} < 1.2M_{\odot}$
- Group 2 grains might be divided in 2 subgroups because of the progenitor mass

+ Aluminum isotopic ratio...a challenge

How to reach ²⁶Al/²⁷Al>0.02 shown by part of group 2 grains?

SIF2015

+ Aluminum isotopic ratio: a possible stellar solution from nuclear physics

- The measurement of
 ²⁵Mg(p, γ)²⁶Al excludes that a solution coming from nuclear data (Strieder et al. 2012)
- What about the mixing profile?

In nuclear astrophysics

- Sometimes solutions come from nuclei (¹⁷O/¹⁶O in grains)
- Sometimes solutions come from stars (²⁶Al/²⁷Al in grains)
- Other times we do not know yet (¹⁴N/¹⁵N in grains and the Li problem)

GRAZIE! THANK YOU!

 In any case it is necessary to collaborate

