Proprietà ed effetti radiativi dell'aerosol desertico nel Mediterraneo

Laboratorio di Osservazioni Ed Analisi della Terra e del Clima alcide.disarra@enea.it

A. di Sarra 22/09/2015

Bilancio radiativo Bilancio energetico alla superficie Processi fotochimici Processi di chimica eterogenea Qualità dell'aria/effetti sulla salute **Fertilizzazione** Struttura termica e dinamica dell'atmosfera Proprietà delle nubi Sistemi convettivi/uragani

• • •

Nabat et al., 2013

(h) - MSG/SEVIRI (2006-2010)

30 Marzo 2013 MODIS-Terra lon: plotted from -10 to 40.0 lat: plotted from 20.00 to 50.00 lev: 1000.00 t: Mar 30 2013

1000 mb

 $\mathsf{MAXWCZEP}$ Reanalysis Daily Averages Pressure Level GrADS image $\mathsf{MIN}\!=\!1$

lon: plotted from -10 to 40.0 lat: plotted from 20.00 to 50.00 lev: 850.00 t: Mar 30 2013

850 mb

4ČE

 $\mathsf{MAXWCEF8}(\mathbf{Reanalysis}\ \mathbf{Daily}\ \mathbf{Averages}\ \mathbf{Pressure}\ \mathbf{Level}\ \mathbf{GrADS}\ \mathbf{image}\ \mathsf{MIN}\!=\!1337$

lon: plotted from -10 to 40.0 lat: plotted from 20.00 to 50.00 lev: 1000.00 t: Jul 29 2005

Mean hgt m

1000 mb

lon: plotted from -10 to 40.0 lat: plotted from 20.00 to 50.00 lev: 850.00 t: Jul 29 2005

850 mb

Mean hgt m

29 Luglio 2005 MODIS-Terra

HYSPLIT transport and dispersion model, NOAA Air Resources Laboratory (ARL)

Pey et al., 2013

Fig. 5. (a) Top: mean African dust contributions to PM_{10} (in $\mu g m^{-3}$) across the Mediterranean (average values for the periods when data are available, in most cases from 2001–2010); (b) bottom: percentage of African dust over bulk PM_{10} registered in the monitoring sites selected in this study (average values for the periods when data are available, in most cases from 2001–2010).

Becagli et al., 2012

(S. Becagli)

Forcing radiativo

$\Delta F = F^{n,s} - F^n$

$$\frac{dL_{\lambda}}{\beta_{\lambda}\,ds} = \frac{dL_{\lambda}(\tau_{s},\theta,\varphi)}{(\tau_{s}(\theta,\varphi))} = -L_{\lambda}(\tau_{s},\theta,\varphi) + \bar{\omega}_{0}(\tau_{s})\tilde{J}_{\lambda,sc}(\tau_{s},\theta,\varphi) + [1-\bar{\omega}_{0}(\tau_{s})]L_{\lambda}^{*}(\tau_{s})$$

$$\tilde{J}_{\lambda,sc}(\tau_s,\theta,\varphi) = \frac{1}{4\pi} \int_0^{2\pi} d\varphi' \int_0^{\pi} d\theta' \sin\theta' p_{\lambda}(\theta',\varphi';\theta,\varphi) L_{\lambda}(\tau_s,\theta',\varphi')$$

INDICE DI RIFRAZIONE

Scheuvens et al., 2013

Potential source areas in northern Africa and their bulk compositional fingerprints (see also Formenti et al., 2011); carbonate and palygorskite contents: abundant: > 30 wt.%, intermediate: 5–30 wt.%, low: 1–5 wt.%, very low: trace amounts.

Potential source area	Illite/kaolinite ratio	Chlorite/kaolinite ratio	Carbonate content [wt.%]	Palygorskite content [wt%]	(Ca+Mg)/Fe [wt.%]/[wt.%]	⁸⁷ Sr/ ⁸⁶ Sr	$\epsilon_{\rm Nd}(0)$
PSA 1	1.0-2.0	1.5	Intermediate to abundant	Low to intermediate	No data	0.714-0.717	-13.5 to -9.5
PSA 2	> 1.6	0.0–1.0	Intermediate to abundant	Low to intermediate	0.6-12.6	0.720-0.738	-17.9 to -13.5
PSA 3	0.3-1.3	0.2–0.9	Variable	Low	0.6-1.2	(0.721-0.726)	-12.4 to -12.1
PSA 4	0.2-1.9	0.0–2.6	Low to intermediate	Not detected	No data	0.715	-15.4 to -10.7
PSA 5	0.0-0.5	Chlorite not detected	Very low	Not detected	0.4-0.7	No data	-12.7
PSA 6	0.7	No data	No data (low?)	Not detected	0.9-2.1	0.706-0.718	-11.0 to -3.9

INDICE DI RIFRAZIONE

DISTRIBUZIONE DIMENSIONALE

Denjean et al., 2015

22 e 28 Giugno 2013: Transporto dalla Tunisia a Lampedusa

→ Sorgenti vicine, meccansimi di trasporto simili, differenti condizioni di mescolamento con altri tipi di aerosol

DISTRIBUZIONE DIMENSIONALE

Zhao et al., 2013

Fig. 12. Cross section of dust-induced radiative heating rate in 2011 from the WRF-Chem simulations in the cases of BIN8, BIN4, MOD3, and MOD3_tuned.

FORMA

DISTRIBUZIONE VERTICALE

In che modo possiamo ottenere una stima corretta del *forcing* radiativo?

Efficienza di forcing alla superficie per diversi tipi di aerosol

ENER

Di Biagio et al., 2010

Efficienza di forcing alla sommità dell'atmosfera

Di Biagio et al., 2010

Media giornaliera del forcing radiativo degli aerosol

Di Biagio et al., 2010

MODIS-TERRA March 28, 2010

March 26, 11:50 UT

March 28, 11:50 UT

di Sarra et al., 2011

Forcing istantaneo ad un angolo zenitale solare di 35°per il 26 Marzo 2010. SW: misure alla superficie + CERES LW: modello radiativo + misure alla superficie + CERES

di Sarra et al., 2011

Forcing istantaneo ad un angolo zenitale solare di 35°per il 26 Marzo 2010. SW: misure alla superficie + CERES LW: modello radiativo + misure alla superficie + CERES

Sulla media giornaliera: il RF LW alla superficie è circa il 50% dello SW Il RF LW al TOA è circa il 40% dello SW circa il 75% del RF atmosferico SW è compensato dal LW

di Sarra et al., 2011

Gomez Amo et al., 2014

Ground-based and Airborne Measurements of the Aerosol Radiative Forcing (GAMARF) 2008

Current Constructions Tetherer Constructions

Meloni et al., 2015

- Distribuzione verticale
- Proprietà ottiche
- Effetti nell'IR

Raccomandazione:

Chiusura rispetto a misure di radiazione di qualità

Grazie