Ricostruzione in modalità $\mu \textit{TPC}$ in diversi prototipi di camere Micromegas

Alessandra Betti

Sapienza Università di Roma e INFN Roma

101° Congresso SIF Roma 24/09/2015

イロン イロン イヨン イ

L'Esperimento ATLAS a LHC

- LHC: collider pp e ioni pesanti collisioni pp con energia di design nel CM 14 TeV
- ATLAS: rivelatore multipurpose per le misure di precisione di proprietà del modello standard e la ricerca di nuova fisica oltre il modello standard

イロト イポト イヨト イヨ

- rivelatore a simmetria cilindrica con struttura a strati
- tracciatore interno, calorimetro elettromagnetico e adronico, spettrometro per muoni
- spettrometro per muoni: campo magnetico fornito da 3 grandi toroidi superconduttori in aria camere per tracciamento di precisione (MDT e CSC) e camere di trigger (RPC e TGC)

- 2010-2012: Run1 $E_{CM} = 7 8$ TeV, $L = 6 \times 10^{33}$ cm⁻²s⁻¹, collisioni ogni 50 ns
- 2013-2015: LS1 preparazione per il run2
- 2015-2018: Run
2 $E_{CM}=13-14~{\rm TeV},~L=10^{\bf 34}~{\rm cm}^{-2}{\rm s}^{-1},$ collisioni ogni 25
ns
- 2018-2019: LS2 preparazione per il run3
- 2020-2022: Run3 $L = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- HL-LHC: $L = 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

LS2: aumento di luminosità \rightarrow la prima stazione dello spettrometro per muoni in avanti dell'esperimento ATLAS (Small Wheel) verrà sostituita per garantire il mantenimento delle attuali prestazioni di trigger e tracciamento in presenza di una molto più alta rate di particelle in avanti (radiazione di fondo fino a $\simeq 15 \ \rm kHz/cm^2$)

 \rightarrow le camere Micromegas verranno installate nella NSW per sostituire gli attuali MDT

<ロ> (四) (四) (三) (三)

MPGD: camere Micromegas

Micromegas: Micro Pattern Gaseous Detector introdotte negli anni 90's da Charpack e Giomataris per la loro capacità di liberare velocemente il rivelatore dagli ioni positivi generati nel processo di ionizzazione del gas (\simeq 100 ns).

- elettrodo planare di drift
- gap di conversione e drift \simeq 5 mm con campo elettrico basso (\simeq 500 V/cm)
- mesh posta a massa sostenuta da pillars
- gap di amplificazione $\simeq 100 \ \mu m$ con campo elettrico elevato ($\simeq 50 \ kV/cm$)
- elettrodo di readout con strip di lettura protette da strip resistive (introdotte per ridurre la probabilità di scarica) con pitch $\simeq 400 \ \mu m$
- la particella carica che attraversa il rivelatore ionizza il gas nella gap di conversione e gli elettroni prodotti driftano verso la mesh
- attraversano la mesh e vengono amplificati nella gap di amplificazione dall'elevato campo elettrico
- vengono raccolti sulle strip resistive e il segnale viene letto sulle strip di lettura per accoppiamento capacitivo mentre gli ioni driftano in direzione opposta e vengono raccolti velocemente sulla mesh

Campo elettrico

I campi elettrici nella zona di conversione e drift e nella zona di amplificazione hanno intensità molto diverse e devono essere uniformi in entrambe le regioni.

La trasmissione degli elettroni attraverso la mesh (transparency) dipende dal rapporto tra i due campi elettrici

$$R = \frac{E_{amp}}{E_{drift}}$$

• R basso: molte delle linee di campo di drift finiscono sulla mesh

 \rightarrow bassa trasparenza

 R alto: la maggior parte delle linee di campo di drift passano attraverso la mesh e raggiungono le strip di lettura

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \rightarrow alta trasparenza

Studio delle performance delle camere Micromegas

La collaborazione MAMMA (Muon ATLAS Micromegas Activity) porta avanti un programma di analisi delle performance delle camere Micromegas per la NSW dell'esperimento ATLAS per:

- misurare le proprietà di base come guadagno e transparency e trovare il punto di lavoro ottimale (HV_{amp} e HV_{drift})
- caratterizzare le performance come risoluzione e efficienza per tracce con diversi angoli di inclinazione

diversi prototipi di camere con dimensioni da 10 imes 10 ${
m cm}^2$ a 1 imes 0.5 ${
m m}^2$

• sviluppare e ottimizzare la strategia e il software di ricostruzione delle tracce

Verranno mostrati alcuni risultati ottenuti dall'analisi dei dati di test beam su piccoli prototipi di camere MM:

- misura della carica raccolta con diverse HV_{amp} e HV_{drift} e diverse mesh
- misura dei tempi di arrivo del segnale sulle strip e ricostruzione dell'angolo di inclinazione in modalità μTPC

イロト イポト イヨト イヨト

Carica dei cluster

Cluster: gruppo di strip consecutive accese la cui dimensione dipende dall'angolo di inclinazione della traccia. Per ogni strip del cluster si misura la carica raccolta e il tempo di arrivo del segnale.

La carica totale del cluster misurata è la somma della carica delle singole strip:

$$Q_{cluster} = (1 - A) \cdot G \cdot T \cdot q_e \cdot N_e$$

può essere descritta dalla funzione di Polva

• all'aumentare di HV_{amp}, con R fissato, la carica raccolta aumenta perché il guadagno aumenta

 all'aumentare del rapporto tra i campi, con HV_{amp} fissato quindi G fissato, la carica raccolta aumenta fino a raggiungere un plateau perché la transparency aumenta

Carica dei cluster con diverse mesh

Il campo elettrico, circa uniforme nella gap di drift e nella gap di amplificazione, è leggermente deformato in prossimità della mesh e la sua configurazione nella zona di amplificazione è influenzata dalla tipologia di mesh utilizzata.

cluster charge in ExMe1

Carica dei cluster con due diverse mesh:

- 50/28 (blu): distanza tra i fili 50 $\mu m,$ spessore dei fili 28 μm
- 70/30 (rosso): distanza tra i fili 70 μm , spessore dei fili 30 μm

Le camere con mesh 50/28 hanno, a parità di HV, una carica media maggiore delle camere con mesh 70/30.

Dalle simulazioni si osserva che nel caso della mesh 50/28 le linee di campo nella zona di amplificazione sono più fitte e si ha quindi un campo elettrico più intenso e di conseguenza un guadagno maggiore.

Il segnale di singola strip viene letto con elettronica di lettura APV25 che fornisce il valore della carica in funzione del tempo campionato ogni $25~{
m ns}$

Effettuando un fit con una funzione Fermi-Dirac si ricava il massimo della distribuzione Q_{max} che è la carica letta dalla strip e il tempo di arrivo del segnale t_{FD} .

イロト イポト イヨト イ

24/09/2015

9 / 14

La distribuzione dei tempi di arrivo del segnale sulle strip ha una forma a scatola la cui larghezza è data dal tempo di drift degli elettroni nella gap di drift.

Misurando $T_{min} \in T_{max}$ si può ricavare $T_{drift} = T_{max} - T_{min}$. Si può inoltre misurare la velocità di drift $V_d = \frac{d_{gap}}{T_{drift}}$.

Ricostruzione della posizione

Le camere Micromegas verranno utilizzate per la ricostruzione delle tracce dei muoni nella NSW.

Con le camere Micromegas è possibile ricostruire la posizione con due diversi metodi:

Metodo del centroide di carica:

si ricostruisce la posizione del cluster tramite il calcolo del baricentro della carica raccolta dalle strip che lo compongono

Metodo della μTPC :

si ricostruisce localmente la traccia nella gap di drift tramite la misura dei tempi di arrivo del segnale sulle strip e l'uso della velocità di drift

$$x_i = pitch \cdot strip index$$

$$z_i = V_{drift} \cdot t_i$$

la misura migliore della posizione è data dalla coordinata x che corrisponde alla z a metà altezza della gap:

$$x_{half} = \frac{z_{half} - c}{m} = \frac{2.5 \text{ mm} - c}{m}$$

$$x = \frac{\sum_{i=1}^{N} x_i q_i}{\sum_{i=1}^{N} q_i}$$

Event display di un cluster ricostruito

- traccia ricostruita con il metodo della μTPC
- carica raccolta dalle strip del cluster
- segnale della singola strip del cluster

ATLAS Work in Progress

Risoluzione spaziale misurata tramite la larghezza della distribuzione della differenza tra le posizioni misurate da due camere

• Metodo del centroide: risoluzione migliore per tracce perpendicolari che generano cluster di piccole dimensioni

- Metodo della µTPC: risoluzione migliore per tracce inclinate che accendono un maggior numero di strip
- Nella NSW le tracce saranno inclinate di 8 − 32° → risoluzione ≃ 100 µm in tutto il range combinando i due metodi

Alessandra Betti

- Le camere Micromegas verranno installate nella NSW dell'esperimento ATLAS
- Sono stati effettuati numerosi test su camere di piccole dimensioni ($10 \times 10 \text{ cm}^2$)
- Sono attualmente in corso studi su prototipi sempre più vicini alla configurazione finale in struttura e dimensioni, anche in presenza di campo magnetico
- I risultati ottenuti finora mostrano prestazioni che soddisfano le richieste per la NSW: risoluzione spaziale di $\simeq 100 \ \mu m$ e efficienza superiore al 95% per singolo layer

イロト イポト イヨト イヨト

GRAZIE PER L'ATTENZIONE!

(日) (四) (三) (三)

æ

14 / 14

24/09/2015