Eredità del run I : Il bosone di Higgs

Paolo Azzurri - INFN sezione di Pisa per le collaborazioni ATLAS e CMS

101-esimo Congresso Nazionale SIF Roma, 24 Sett 2015

Il bosone di Higgs

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

PHYSICAL REVIEW LETTERS

19 October 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Il bosone di Higgs

$$\mathcal{L} = \partial_{\mu} \varphi^{\dagger} \partial^{\mu} \varphi - V(\varphi^{\dagger} \varphi)$$
$$V(\varphi^{\dagger} \varphi) = \frac{1}{2} (\lambda^{2} |\varphi|^{4} - \mu^{2} |\varphi|^{2})$$

Meccanismo di rottura – della simmetria SU(2)xU(1) (SSB)

- ightarrow bosoni vettori W,Z ricevono termini in massa da SSB
- \rightarrow fermioni ricevono massa da accoppiamenti Yukawa
- \rightarrow SSB lascia uno scalare massivo: il bosone di Higgs

Permette di assegnare termini in massa alle particelle SM Cancella le divergenze e la violazione di unitarietà in WW→WW,ZZ

La conferma del meccanismo e l'osservazione del bosone di Higgs è una **chiave di volta del modello standard**

... cercata per ~ 50 anni

V (ø)

 $Re(\phi)$

 $Im(\phi)$

Ricerche e indicazioni pre-LHC

Similitudini con le situazioni precedenti alle scoperte dei bosoni W,Z e del quark top

La scoperta

- <u>13 dicembre 2011</u> (5/fb @7TeV) eccesso di eventi nella regione $m_H \sim 125 \text{ GeV}$ CMS:p=5•10⁻³ =2.6 σ ATLAS:p=2•10⁻⁴ 3.6 σ (exp 2.6 σ)
 - <u>4 luglio 2012 (</u> 5/fb @7TeV + 5/fb @8TeV)

CMS ddddddddddddddddd

 $5 \sigma: p=2.85 \cdot 10^{-7}$ $m_{H} = 126.5 \pm 0.6 \text{ GeV}$ $5 \sigma: p=2.85 \cdot 10^{-7}$ $m_{H} = 125.3 \pm 0.6 \text{ GeV}$

P. Azzurri - LHC Run I Higgs

I canali di decadimento

con m_H= 125 GeV

... con m_H diverso sarebbe stato più difficile misurare accoppiamenti

- sezioni d'urto più alte (anche per il fondo)
- decadimenti fermionici (bb+ττ) accessibili
- larghezza naturale trascurabile: picco m_H ricostruibile con larghezza sperimentale

P. Azzurri - LHC Run I Higgs

I canali di ricerca

Eventi prodotti in 5 fb⁻¹@7TeV +20 fb⁻¹@8TeV

∆m _H / m _H		GF	VBF	VH	ttH
~2%	H→ZZ [*] →4I	~120	~10	~3	~
~I-2%	н→үү	~1000	~90	~22	~7
~20%	H→WW*→IIvv	~10 000	~900	~220	~70
~10%	Η→ττ	~30 000	~2 400	~600	~180
~10%	H→bb	~250 000	~22 000	~5 000	~ 700

(perVH solo con W,Z→leptoni)

I canali di ricerca

Eventi prodotti in 5 fb⁻¹ +20 fb⁻¹ → Selezionati S/B [basato su CMS]

	GF	VBF	VH	ttH
H→ZZ [*] →4I	~120 → 20/10	~10 → 3/1	~3	~
н→үү	~1000	~90	~22	~7
	→ 500/10 000	→ 30/150	→ 7/25	➔ 1/4
H→WW*→IIvv	~10 000	~900	~220	~70
	→ 250/1 500	→ 10/10	→ 10/100	→ 10/150
Η→ττ	~30 000	~2 400	~600 →	~180
	→ 100/5 000	→ 20/50	0/ 00	→ 1/100
H→bb	~250 000	~22 000 → 50/2000	~5 000 → 20/200	~ 700 → 0/500

arbitrarietà nella scelta del livello di purezza indicato

La misura della massa

ATLAS $m_{H} = 125.36 \pm 0.37(stat) \pm 0.18(syst)$ GeV

Phys. Rev. D 90 (2014) 052004

CMS $m_{\rm H}$ = 125.02^{+0.26} (stat)^{+0.14} (syst) GeV

Eur.Phys.J.C 75 (2015) 212

m_H=125.09±0.21(stat.)±0.11(syst.) GeV

Phys.Rev.Lett.114 (2015) 191803 (14 maggio 2015)

La misura della massa

m_H è un parametro libero del modello standard
 → determina gli accoppiamenti
 determina la forma e l'evoluzione del potenziale

misura di m_H nei canali $H \rightarrow \gamma \gamma e H \rightarrow 4I$ con statistica più significativa e migliore risoluzione (1-2%)

$m_{H} da H \rightarrow \gamma \gamma$

CMS: cristalli PbWO₄ alta granularità ($\delta\eta$, $\delta\phi \sim 0.02$) ATLAS: L Ar a campionamento direzione sciame ricostruita

Energia stimata con tecniche di regressione MVA

Eventi divisi in categorie a seconda delle proprietà cinematiche e qualità dei fotoni

$m_{H} da H \rightarrow \gamma \gamma$

125.98±0.42(stat)±0.28(syst) GeV

124.70±0.31(stat)±0.15(syst) GeV

P. Azzurri - LHC Run I Higgs

P. Azzurri - LHC Run I Higgs

$m_H da H \rightarrow 4l(e, \mu)$

125.59±0.42(stat)±0.17(syst) GeV

15

124.51±0.52(stat)±0.06(syst) GeV

P. Azzurri - LHC Run I Higgs

La misura combinata di m_H

 $-2\ln \Lambda(m_{_H})$ 6 LHC Run 1 massimizzazione di profile-likelihood ratio con 5 3 intensità di segnale: GF($\gamma \gamma$), VBF($\gamma \gamma$), GF(4l)

~300 effetti sistematici inclusi (nuisances)

Compatibilità 4 misure: ~24% (χ^2 -prob)

3

2

0

124

ATLAS and CMS

124.5

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ \rightarrow 4l$

125

Combined $\gamma\gamma+4l$

--- Stat. only uncert.

125.5

126

 m_{H} [GeV]

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

15th September 2015

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC *pp* collision data at $\sqrt{s} = 7$ and 8 TeV

The ATLAS and CMS Collaborations

Seminario LHC lunedì 21/9 (W. Verkerke)

P. Azzurri - LHC Run I Higgs

input da **17** pubblicazioni

ATLAS arXiv:1507.04548

CMS Eur. Phys. J. C 75 (2015) 212

Likelihood combinata con ~580 distribuzioni (regioni di segnale e fondo) Cura nel trattamento delle accettanze incrociate Cura nel trattamento delle correlazioni (~4200 sistematiche)

Intensità globale del segnale

	Best-fit μ		Uncertainty			
		Total	Stat	Expt	Thbgd	Thsig
ATLAS and CMS (meas.)	1.09	+0.11 -0.10	+0.07 -0.07	+0.04 -0.04	$^{+0.03}_{-0.03}$	+0.07 -0.06
ATLAS and CMS (exp.)	-	+0.11 -0.10	+0.07 -0.07	+0.04 -0.04	$^{+0.03}_{-0.03}$	+0.06 -0.06
ATLAS (meas.)	1.20	+0.15 -0.14	+0.10 -0.10	+0.06 -0.06	$^{+0.04}_{-0.04}$	+0.08 -0.07
CMS (meas.)	0.98	+0.14 -0.13	+0.10 -0.09	$^{+0.06}_{-0.05}$	$^{+0.04}_{-0.04}$	+0.08 -0.07

 $\Lambda(\vec{\alpha}) = \frac{L(\vec{\alpha}, \vec{\theta}(\vec{\alpha}))}{L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})}$

$$\mu = \sigma / \sigma_{\rm SM} = 1.09^{+0.11} - 0.10$$

Intensità produzione e decadimento

 $i \rightarrow H \rightarrow f$

$$\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{\rm SM} \cdot (BR^f)_{\rm SM}} = \mu_i \times \mu^f$$

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$$
 i = ggF, VBF, WH, ZH, ttH

 $\mu^{f} = \frac{BR^{f}}{(BR^{f})_{SM}} \qquad f = \gamma \ \gamma, ZZ, WW, \ \tau \ \tau, bb$

Congresso SIF - Roma 24/09/15

P. Azzurri - LHC Run I Higgs

Significatività produzione e decadimento

$$i \rightarrow H \rightarrow f$$
 $\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{SM} \cdot (BR^f)_{SM}} = \mu_i \times \mu^f$

_	Production process	Measured significance (σ)	Expected significance (σ)
\Rightarrow	VBF	5.4	4.7
	WH	2.4	2.7
	ZH	2.3	2.9
	VH	3.5	4.2
	tt H	4.4	2.0
	Decay channel		
\Rightarrow	$H \to \tau \tau$	5.5	5.0
	$H \rightarrow bb$	2.6	3.7

nel club delle 5 σ (con i=GF, f=WW,ZZ, $\gamma \gamma$)

schema dei "coupling modifiers" κ sviluppato nel LHC XS WG $\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_\mathrm{H}}$ $\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}} \qquad \kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$ ΨĻ riscalamento universale di 2 ATLAS and CMS LHC Run 1 fermioni \mathcal{K}_{F} e bosoni \mathcal{K}_{B} 1.5 Preliminary $\square H \rightarrow \gamma \gamma$ $-2 \ln \Lambda(\kappa_{_{F}})$ ATLAS and CMS LHC Run 1 $H \rightarrow ZZ$ $[\kappa_{\rm F},\kappa_{\rm V}]$ 45 ----- SM expected $H \rightarrow WW$ Observed 0.5 40 - Preliminary $H \rightarrow bb$ $H \rightarrow \tau \tau$ 35 Combined 30E hindradanda 25 -0.5 20 15 10 -1.5 -68% CL ★ SM + Best fit ---95% CL 0.5 2 -1 -0.5 0 1.5 -1.51 1.5 0.5 0 2 κ_{F} $\kappa_{\rm F} < 0$ molto sfavorito κţ SSB / Yukawa

P. Azzurri - LHC Run I Higgs

Accoppiamenti: rapporti

esplorazione più generica incertezze sistematiche ridotte

Congresso SIF - Roma 24/09/15

P. Azzurri - LHC Run I Higgs

H→bb ?

i fit indicano un BR(H \rightarrow bb) basso (<-2 σ) è determinato anche da eccessi nelle produzioni VH, ttH in altri canali

ATLAS Hbb							
VH: μ =0.52±0.40 ttH : μ =1.5±1.1			CMS H	lbb			
	$H \rightarrow b\overline{b}$	Best fit (68% CL)	Upper limi	Upper limits (95% CL)		Signal significance	
	Channel	Observed	Observed	Expected	Observed	Expected	
:	VH	0.89 ± 0.43	1.68	0.85	2.08	2.52	
	tīH	0.7 ± 1.8	4.1	3.5	0.37	0.58	
	VBF	$2.8^{+1.6}_{-1.4}$	5.5	2.5	2.20	0.83	
-	Combined	$1.03_{-0.42}^{+0.44}$	1.77	0.78	2.56	2.70	

+ Tevatron: ttH : μ = 1.6±0.7

Come accoppia l'Higgs ai quark-down ?

$H \rightarrow \gamma \gamma \rightarrow J=2N, C=+I$

 \rightarrow WW^{*} \rightarrow

Test di J^P=0⁺ vs 0⁻, 0_h⁺, 2⁺ in H \rightarrow ZZ*,WW, $\gamma \gamma$

osservazioni indicano una forte consistenza con J^P=0⁺, sfavorendo le altre ipotesi con CL>99.9%

ATLAS Phys. Lett. **B726** (2013) 120, arXiv:1307.1432 [hep-ex] ATLAS **arXiv:1506.05669** [hep-ex], submitted to EPJC.

Numeri quantici

CMS Phys. Rev. Lett. **110** no. 8, (2013) 081803, arXiv:1212.6639 [hep-ex] CMS Phys. Rev. D **92**, 012004 (2015) arXiv:1411.3441 [hep-ex]

J=1 in ZZ,WW escluso al 99.999% (>4 σ) Frazione di pseudoscalare f_{a3}<0.43 @95%CL

iniziata anche l'esplorazione della struttura degli accoppiamenti (HWW, HZZ, ...): precisione molto limitata per ora

Conclusioni

La scoperta del bosone di Higgs è la legacy più celebrata del Run I di LHC Completamento del SM dopo ~50 anni di ricerche

Massa mH=125.1 GeV misurata al 0.2% ($\delta \sim \% / \sim 100$ eventi)

Intensità di produzione, BR di decadimento ed accoppiamenti consistenti con SM minimale al >10%

Deviazioni BSM potrebbero essere accessibili al Run 2

Backup

Likelihood ratio

per limiti superiori e significatività del segnale

$$q_0 = -2\ln \frac{\mathcal{L}(\operatorname{data} | b, \hat{\theta}_0)}{\mathcal{L}(\operatorname{data} | \hat{\mu}s + b, \hat{\theta})}, \text{ with } \hat{\mu} > 0, \qquad p_0 = \operatorname{P}\left(q_0 \ge q_0^{\operatorname{data}} \mid b\right)$$

modified frequentist CLs per i limiti

per misure dei parametri di interesse (POI) a

$$q(a) = -2\Delta \ln \mathcal{L} = -2\ln \frac{\mathcal{L}(\text{data} \mid s(a) + b, \hat{\theta}_a)}{\mathcal{L}(\text{data} \mid s(\hat{a}) + b, \hat{\theta})}$$

P. Azzurri - LHC Run I Higgs

$m_H da H \rightarrow \gamma \gamma \gamma ATLAS$

$m_H da H \rightarrow \gamma \gamma \gamma CMS$

BDT per classificare gli eventi (S/B) usa

- cinematica dei fotoni e di-fotoni
- qualità dei fotoni e profilo sciame
- stima risoluzione $\delta m(\gamma \gamma)$ evento

$m_H da H \rightarrow 4I ATLAS$

m_H da H→4I CMS

misura di m_H

Incertezze sistematiche su m_H

	Uncertainty in ATLAS		Uncertainty in CMS		Uncertainty in	
	results	results [Gev]:		results [Gev]:		result [GeV]:
	observed ((expected)	observed	(expected)	observed (expected)	
	$H \to \gamma \gamma$	$H \to ZZ$ IIII	$H \to \gamma \gamma$	$H \to ZZ$ IIII	ATLAS	CMS
Scale uncertainties:						
ATLAS ECAL non-linearity /	$0.14 \ (0.16)$	_	$0.10 \ (0.13)$	_	$0.02 \ (0.04)$	$0.05\ (0.06)$
CMS photon non-linearity						
Material in front of ECAL	$0.15\ (0.13)$	_	$0.07 \ (0.07)$	_	$0.03\ (0.03)$	$0.04\ (0.03)$
ECAL longitudinal response	$0.12 \ (0.13)$	—	$0.02 \ (0.01)$	—	$0.02 \ (0.03)$	0.01 (0.01)
ECAL lateral shower shape	$0.09 \ (0.08)$	—	$0.06 \ (0.06)$	—	$0.02 \ (0.02)$	$0.03\ (0.03)$
Photon energy resolution	$0.03\ (0.01)$	_	$0.01 \ (< 0.01)$	—	0.02~(<0.01)	$< 0.01 \ (< 0.01)$
ATLAS $H \to \gamma \gamma$ vertex & conversion	$0.05\ (0.05)$	—	=	—	$0.01 \ (0.01)$	_
reconstruction						
$Z \rightarrow ee$ calibration	$0.05\ (0.04)$	0.03 (0.02)	$0.05\ (0.05)$	—	$0.02 \ (0.01)$	0.02 (0.02)
CMS electron energy scale & resolution	_	_	_	$0.12 \ (0.09)$	_	$0.03\ (0.02)$
Muon momentum scale & resolution	—	0.03 (0.04)	—	0.11(0.10)	< 0.01 (0.01)	$0.05 \ (0.02)$
Other uncertainties:		· · · ·			· · ·	
ATLAS $H \to \gamma \gamma$ background	$0.04 \ (0.03)$	_	_	_	$0.01 \ (0.01)$	_
modeling						
Integrated luminosity	$0.01 \ (< 0.01)$	$< 0.01 \ (< 0.01)$	$0.01 \ (< 0.01)$	$< 0.01 \ (< 0.01)$	0.01 ((<0.01)
Additional experimental systematic	0.03 (< 0.01)	< 0.01 (< 0.01)	0.02(<0.01)	0.01 (< 0.01)	$0.01 \ (< 0.01)$	0.01 (< 0.01)
uncertainties	. ,	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		. ,	, , , , , , , , , , , , , , , , , , ,
Theory uncertainties	< 0.01 (< 0.01)	< 0.01 (< 0.01)	0.02 (< 0.01)	< 0.01 (< 0.01)	0.01 ((<0.01)
Systematic uncertainty (sum in	0.27 (0.27)	0.04 (0.04)	0.15(0.17)	0.16(0.13)	0.11	(0.10)
quadrature)						
Systematic uncertainty (nominal)	$0.27 \ (0.27)$	$0.04 \ (0.05)$	$0.15 \ (0.17)$	0.17 (0.14)	0.11	(0.10)
Statistical uncertainty	$0.43 \ (0.45)$	$0.52 \ (0.66)$	$0.31 \ (0.32)$	$0.42 \ (0.57)$	0.21	(0.22)
Total uncertainty	$0.51\ (0.52)$	0.52 (0.66)	$0.34\ (0.36)$	$0.45 \ (0.59)$	0.24	(0.24)
Analysis weights	19%~(22%)	18%~(14%)	40%~(46%)	23%~(17%)		_

P. Azzurri - LHC Run I Higgs

Incertezze sistematiche su m_H

Production	Cross section [pb]		Order of	Decay channel	Branching ratio [%]
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation	$H \rightarrow bb$	57.5 ± 1.9
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)	$H \rightarrow WW$	21.6 ± 0.9
VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+~NNLO(QCD)	$H \rightarrow aa$	8 56 + 0.86
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)	$\Pi \rightarrow gg$	6.30 ± 0.36
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)	$H \rightarrow \tau \tau$	6.30 ± 0.36
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)	$H \rightarrow cc$	2.90 ± 0.35
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)	$H \rightarrow ZZ$	2.67 ± 0.11
tt H	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)	$H \rightarrow \gamma \gamma$	0.228 ± 0.011
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)	$H \rightarrow Z\gamma$	0.155 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0		$H \rightarrow \mu \mu$	0.022 ± 0.001

_

Production	Event	Event generator			
process	ATLAS	CMS			
ggF	Powneg [29-33]	POWHEG			
VBF	POWHEG	POWHEG			
WH	Рутніа8 [34]	Рутніа6.4 [35]			
$ZII (qq \rightarrow ZII \text{ or } qg \rightarrow ZII)$	Ρυτηία8	Ρυτηία6.4			
$ggZH (gg \rightarrow ZH)$	POWHEG	See text			
ttH	POWHEL [43]	Ρυτηία6.4			
$tHq (qb \rightarrow tHq)$	MadGraph [45]	AMC@NLO [28]			
$tHW (gb \rightarrow tHW)$	AMC@NLO	AMC@NLO			
bbH	Ρυτηίλ8	Pythia6, aMC@NLO			

Intensità μ

Production process	ATLAS+CMS	ATLAS	CMS
$\mu_{ m ggF}$	$1.03_{-0.15}^{+0.17}$	$1.25_{-0.21}^{+0.24}$	$0.84_{-0.16}^{+0.19}$
$\mu_{ m VBF}$	$1.18^{+0.25}_{-0.23}$	$1.21_{-0.30}^{+0.33}$	$1.13_{-0.34}^{+0.37}$
μ_{WH}	$0.88^{+0.40}_{-0.38}$	$1.25^{+0.56}_{-0.52}$	$0.46^{+0.57}_{-0.54}$
μ_{ZH}	$0.80^{+0.39}_{-0.36}$	$0.30_{-0.46}^{+0.51}$	$1.35_{-0.54}^{+0.58}$
μ_{ttH}	$2.3^{+0.7}_{-0.6}$	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$

Decay channel	ATLAS+CMS	ATLAS	CMS
$\mu^{\gamma\gamma}$	$1.16^{+0.20}_{-0.18}$	$1.15_{-0.25}^{+0.27}$	$1.12_{-0.23}^{+0.25}$
μ^{ZZ}	$1.31_{-0.24}^{+0.27}$	$1.51_{-0.34}^{+0.39}$	$1.05_{-0.27}^{+0.32}$
μ^{WW}	$1.11_{-0.17}^{+0.18}$	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$
$\mu^{\tau\tau}$	$1.12_{-0.23}^{+0.25}$	$1.41_{-0.35}^{+0.40}$	$0.89^{+0.31}_{-0.28}$
μ^{bb}	$0.69^{+0.29}_{-0.27}$	$0.62^{+0.37}_{-0.36}$	$0.81_{-0.42}^{+0.45}$

Production	Loops	Interference	Multip	licative factor
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	_	~	$\kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	~	$\kappa_{\rm Z}^2$
$\sigma(gg \to ZH)$	\checkmark	Z - t	~	$2.27 \cdot \kappa_{\rm Z}^2 + 0.37 \cdot \kappa_{\rm t}^2 - 1.64 \cdot \kappa_{\rm Z} \kappa_{\rm t}$
$\sigma(ttH)$	_	_	~	$\kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	_	W-t	~	$1.84 \cdot \kappa_{\rm t}^2 + 1.57 \cdot \kappa_{\rm W}^2 - 2.41 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(qb \to tHq)$	_	W-t	~	$3.4 \cdot \kappa_{\rm t}^2 + 3.56 \cdot \kappa_{\rm W}^2 - 5.96 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	_	_	~	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_	~	$\kappa_{\rm Z}^2$
Γ^{WW}	_	_	~	$\kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W - t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t}$
$\Gamma^{\tau\tau}$	_	_	~	κ_{τ}^2
Γ^{bb}	_	_	~	$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^2
Total width for $BR_{BSM} = 0$				E.
				$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$
$\Gamma_{ m H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	+ $0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				+ $0.0023 \cdot \kappa_{\gamma}^2$ + $0.0016 \cdot \kappa_{Z\gamma}^2$ +
				$+ 0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{\mu}^{2}$

Channel	References for		Signal stre	Signal strength $[\mu]$		Signal significance $[\sigma]$	
	individual	publications	from	from results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
$H \rightarrow \gamma \gamma$	[27]	[50]	$1.15_{-0.25}^{+0.27}$	$1.12_{-0.23}^{+0.25}$	5.0	5.6	
			$\binom{+0.26}{-0.24}$	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)	
$H \to ZZ \to 4\ell$	[51]	[52]	$1.51^{+0.39}_{-0.34}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0	
			$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)	
$H \rightarrow WW$	[53, 54]	[55]	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$	6.8	4.8	
			$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)	
$H \to \tau \tau$	[56]	[57]	$1.41_{-0.35}^{+0.40}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4	
			$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)	
$H \rightarrow bb$	[37]	[38]	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0	
			$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	[58]	[59]	-0.7 ± 3.6	0.8 ± 3.5			
			(±3.6)	(±3.5)			
<i>ttH</i> production	[60-62]	[64]	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	
			$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)	

		· 0							
Parameter	Best-fit	Uncertainty		Best-fit	Uncertainty		Best-fit	Uncertainty	
	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst
	ATLAS+CMS			ATLAS			CMS		
$\kappa_{gZ} = \kappa_g \cdot \kappa_Z / \kappa_H$	${}^{+0.11}_{-0.11} \\ ({}^{+0.11}_{-0.11})$	$^{+0.09}_{-0.09}$ $(^{+0.09}_{-0.09})$	+0.07 -0.06 (+0.06 (-0.05)	$1.20 \substack{+0.16 \\ -0.15} \\ (\substack{+0.16 \\ -0.15})$	+0.14 -0.14 (+0.14) (-0.13)	+0.08 -0.06 (+0.07 (-0.06)	$0.99 \substack{+0.14 \\ -0.13 \\ (\substack{+0.15 \\ -0.14 })}$	$^{+0.12}_{-0.12}$ $(^{+0.13}_{-0.12})$	+0.07 -0.06 (+0.07 (-0.06)
$\lambda_{Zg} = \kappa_Z / \kappa_g$	$1.26 \substack{+0.23 \\ -0.19} \\ (\substack{+0.20 \\ -0.17})$	$^{+0.18}_{-0.16}$ $(^{+0.15}_{-0.14})$	+0.15 -0.12 (+0.12) (-0.10)	$1.06 \substack{+0.26 \\ -0.21} \\ (\substack{+0.28 \\ -0.23})$	+0.21 -0.18 (+0.23) (-0.20)	+0.14 -0.11 (+0.16) (-0.11)	$1.47 \stackrel{+0.44}{_{-0.34}} \\ (\stackrel{+0.27}{_{-0.23}})$	+0.34 -0.28 (+0.22) (-0.19)	+0.29 -0.19 (+0.17 (-0.12)
$\lambda_{tg} = \kappa_t / \kappa_g$	$1.76^{+0.32}_{-0.29} \\ (^{+0.29}_{-0.39})$	+0.21 -0.20 (^{+0.20} (-0.21)	+0.23 -0.20 (^{+0.21})	$1.39^{+0.34}_{-0.33} \\ (^{+0.38}_{-0.54})$	+0.25 -0.24 (^{+0.28})	+0.23 -0.22 (^{+0.26})	-2.25 ^{+0.51} _{-0.55} (^{+0.42} _{-0.64})	$^{+0.39}_{-0.36}$ $(^{+0.31}_{-0.33})$	+0.39 -0.30 (+0.29 (-0.46)
$\lambda_{WZ} = \kappa_W/\kappa_Z$	$ \begin{array}{c} 0.89 {}^{+0.10}_{-0.09} \\ ({}^{+0.12}_{-0.10}) \end{array} $	+0.09 -0.08 (^{+0.11})	$^{+0.04}_{-0.04}$ $(^{+0.05}_{-0.04})$	$\begin{array}{c} 0.92 {}^{+0.14}_{-0.12} \\ ({}^{+0.18}_{-0.15}) \end{array}$	+0.13 -0.11 (^{+0.16})	+0.05 -0.04 (^{+0.07})	$ \begin{array}{r} \text{-0.85} \begin{array}{c} \text{+0.13} \\ \text{-0.15} \\ (\begin{array}{c} \text{+0.17} \\ \text{-0.14} \end{array}) \end{array} $	+0.13 -0.11 (^{+0.15})	+0.07 -0.06 (^{+0.07})
$\lambda_{\gamma Z} = \kappa_{\gamma}/\kappa_{Z}$	$0.89 ^{+0.11}_{-0.10} \\ (^{+0.13}_{-0.12})$	$^{+0.11}_{-0.09}$ $(^{+0.13}_{-0.11})$	+0.04 -0.03 (+0.04) (-0.03)	$0.88 \substack{+0.16 \\ -0.14} \\ (\substack{+0.20 \\ -0.17})$	+0.15 -0.13 (+0.19) (-0.17)	+0.04 -0.03 (+0.06) (-0.04)	$0.91 \substack{+0.17 \\ -0.14 \\ (\substack{+0.18 \\ -0.16})}$	+0.16 -0.13 (+0.17 (-0.15)	+0.05 -0.04 (^{+0.05})
$\lambda_{\tau Z} = \kappa_{\tau}/\kappa_{Z}$	$\begin{array}{c} 0.85 {}^{+0.14}_{-0.12} \\ ({}^{+0.17}_{-0.15}) \end{array}$	$^{+0.12}_{-0.10}$ $(^{+0.14}_{-0.13})$	+0.07 -0.06 (+0.09) (-0.08)		+0.18 -0.15 (+0.23) (-0.19)	$^{+0.11}_{-0.09}$ $(^{+0.14}_{-0.12})$		+0.16 -0.15 (+0.19) (-0.17)	+0.10 -0.08 (+0.12) (-0.11)
$\lambda_{bZ} = \kappa_b / \kappa_Z$	$ \begin{array}{c} 0.56 {}^{+0.18}_{-0.18} \\ ({}^{+0.25}_{-0.22}) \end{array} $	$^{+0.12}_{-0.11}$ $(^{+0.21}_{-0.18})$	$^{+0.10}_{-0.11}$ $(^{+0.14}_{-0.11})$		$^{+0.20}_{-0.18}$ $(^{+0.31}_{-0.24})$	$^{+0.14}_{-0.15}$ $(^{+0.18}_{-0.14})$	$\begin{array}{c} 0.47 \begin{array}{c} {}^{+0.26}_{-0.17} \\ ({}^{+0.38}_{-0.37}) \end{array}$	$^{+0.17}_{-0.15}$ $(^{+0.32}_{-0.25})$	$^{+0.15}_{-0.16}$ $(^{+0.20}_{-0.17})$

p-value

34%

24%

60%

88%

72%

16%

16%

13%

65%

11%

82%

67%

78%

59%

DoF

1 μ

Parameters

5 $\mu_{ggF}, \mu_{VBF}, \mu_{WH}, \mu_{ZH}, \mu_{ttH}$ 5 $\mu^{\gamma\gamma}, \mu^{ZZ}, \mu^{WW}, \mu^{\tau\tau}, \mu^{b\bar{b}}$

6 $\mu_V/\mu_F, \mu_F^{\gamma\gamma}, \mu_F^{ZZ}, \mu_F^{WW}, \mu_F^{\tau\tau}, \mu_F^{bb}$

 $\sigma_{ZH}/\sigma_{ggF}, \qquad \sigma_{ttH}/\sigma_{ggF},$ $BR^{\gamma\gamma}/BR^{ZZ}, BR^{\tau\tau}/BR^{ZZ}, BR^{b\bar{b}}/BR^{ZZ}$

 $\sigma_{ZH}/\sigma_{ggF}, \qquad \sigma_{ttH}/\sigma_{ggF},$

7 $\kappa_{gZ}, \lambda_{Zg}, \lambda_{tg}, \lambda_{WZ}, \lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{hZ}$

6 $\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu$

2 $\kappa_{\sigma}, \kappa_{\gamma}$

2 κ_V, κ_F

3 $\lambda_{du}, \lambda_{Vu}, \kappa_{uu}$

3 $\lambda_{la}, \lambda_{Va}, \kappa_{aa}$

7 $\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_g, \kappa_v$

10 $\mu_V^{\gamma\gamma}, \mu_V^{ZZ}, \mu_V^{WW}, \mu_V^{\tau\tau}, \mu_V^{b\bar{b}}, \mu_F^{\gamma\gamma}, \mu_F^{ZZ}, \mu_F^{WW}, \mu_F^{\tau\tau}, \mu_F^{b\bar{b}}$

9 $\sigma(gg \rightarrow H \rightarrow ZZ), \ \sigma_{\rm VBF}/\sigma_{\rm ggF}, \ \sigma_{WH}/\sigma_{\rm ggF},$

9 $\sigma(gg \rightarrow H \rightarrow WW), \ \sigma_{\rm VBF}/\sigma_{\rm ggF}, \ \sigma_{WH}/\sigma_{\rm ggF},$

 $BR^{\gamma\gamma}/BR^{WW}, BR^{\tau\tau}/BR^{WW}, BR^{b\bar{b}}/BR^{WW}$

 BR^{WW}/BR^{ZZ} ,

 BR^{ZZ}/BR^{WW} ,