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Motivations:

? S. Simonucci, P. Pieri, and GCS, published as
an article in Nature Physics (September, 2015).

In principle, the Bogoliubov-de Gennes (BdG) eqs(
H(r) ∆(r)
∆(r)∗ −H(r)∗

)(
uν(r)
vν(r)

)
= εν

(
uν(r)
vν(r)

)
where H(r) = (i∇+A(r))2

2m + V (r)− µ, form the basis
for the calculation of physical quantities for
superconductors in inhomogeneous situations

⇐⇒



the gap parameter ∆(r) varies with r and is
determined via the self-consistent equation:

∆(r) = −v0

∑
ν

uν(r)vν(r)∗ [1− 2fF (εν)]

where
v0 = coupling constant of contact interaction

fF (ε) = (eε/(kBT ) + 1)−1 = Fermi function.

In practice, the use of the BdG equations is limited
to a few situations (single vortex, a few vortices,
Josephson effect, isolated solitons, · · · ) due to
limitations in computer time and memory space.



Two kinds of questions:

• Fundamental question: To what extent is the
detailed information contained in the BdG eqs
really needed?
(“old” question, raised by Eilenberger in 1968)

And what happens when the inter-particle
coupling gets strong? (BCS-BEC crossover)

• Practical question: How is it possible
to account for experiments with ultra-cold Fermi
gases (but with other systems as well), which
may reveal the superfluid phase in the presence
of complex arrays of vortices ?



The MIT experiment on vortex lattices
[Nature 435, 1047 (2005)]:

Observation of vortex lattices in rotating Fermi
gases provides definite evidence for superfluidity !



The Innsbruck experiment [New J. of Phys. 13, 035003 (2011)]:
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P vs temperature at unitarity (Ωtrap is fixed)



BdG eqs → differential eqs for ∆(r):

There are cases when the BdG eqs can be replaced
by (simpler to solve) differential equations for ∆(r):

• Ginzburg-Landau (GL) equation for strongly
overlapping Cooper pairs [Gorkov (1959)]:

[
6π2(kBTc)2

7ζ(3)EF

(
1− T

Tc

)
+
∇2

4m

]
∆GL(r)− 3

4EF
|∆GL(r)|2∆GL(r) = 0

which holds close to Tc in the (extreme) BCS
limit (µ ' EF ).



BdG eqs → differential eqs for ∆(r):

• Gross-Pitaevskii (GP) equation for dilute
composite bosons [Pieri & GCS (2003)]:

− ∇2

4m
Φ(r) + 2V (r) Φ(r) +

8πaF
2m

|Φ(r)|2Φ(r) = µB Φ(r)

with Φ(r) =

√
m2aF

8π
∆(r)

which holds at low T in the BEC limit where

2µ ' −ε0 + µB , ε0 = 1
ma2

F
= binding energy

aF = 2-fermion scattering length (µB � ε0).



Small parameters for GL and GP eqs:

To derive the GL and GP eqs from the BdG eqs,
one exploits the existence of a “small parameter” η:

η = |∆(r)|
kBTc

� 1
for GL equation

η = |∆(r)|
|µ| � 1

for GP equation

Question: Can one do something better than this, and
replace the BdG eqs by a differential equation for ∆(r) over an

extended region of the “temperature vs coupling diagram” ?



Temperature vs coupling phase diagram of
the BCS-BEC crossover:
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Coarse graining of the BdG equations:

We have considered the following double coarse-graining

procedure [S. Simonucci and GCS, PRB 89, 054511 (2014)]:

r′′ = R + τ + ρ

∆(r′′) = ∆̃(R) e2iQ(R,τ)·(R+τ+ρ)

l

x’’
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The LPDA differential equation for ∆(r):
After some manipulations and approximations based on the

“smoothness” of ∆(r), from the BdG eqs one arrives at:

− m

4πaF
∆(r) = I0(r) ∆(r) + I1(r)

∇2

4m
∆(r)− I1(r) i

A(r)

m
· ∇∆(r)

with I0(r) =

∫
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(2π)3

{[
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]

2E(k|r)
−

m

k2

}

I1(r) =
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}

where ξ(k|r) =
k2

2m
− µ̄(r) , µ̄(r) = µ− V (r)−

A(r)2

2m

E(k|r) =
√
ξ(k|r)2 + |∆(r)|2 , EA

+(k|r) = E(k|r)−
k · A(r)

m



The LPDA differential equation for ∆(r):
After some manipulations and approximations based on the

“smoothness” of ∆(r), from the BdG eqs one arrives at:

− m

4πaF
∆(r) = I0(r) ∆(r) + I1(r)

∇2

4m
∆(r)− I1(r) i

A(r)

m
· ∇∆(r)

with I0(r) =

∫
dk

(2π)3

{[
1− 2fF (EA

+(k|r))
]

2E(k|r)
−

m

k2

}

I1(r) =
1

2

∫
dk

(2π)3

{
ξ(k|r)

2E(k|r)3

[
1− 2fF (EA

+(k|r))
]

+
ξ(k|r)

E(k|r)2

∂fF (EA
+(k|r))

∂EA
+(k|r)

−
k · A(r)

A(r)2

1

E(k|r)

∂fF (EA
+(k|r))

∂EA
+(k|r)

}

where ξ(k|r) =
k2

2m
− µ̄(r) , µ̄(r) = µ− V (r)−

A(r)2

2m

E(k|r) =
√
ξ(k|r)2 + |∆(r)|2 , EA

+(k|r) = E(k|r)−
k · A(r)

m



Recovering GL and GP eqs from LPDA eq:
• GL eq ⇐ (kFaF )−1 � −1 and T ' Tc :

I0(r) ∼= −
m

4πaF
+ N0

(Tc − T )

Tc
−

7 ζ(3)

8π2

N0

(kBTc )2
|∆(r)|2

I1(r) ∼=
k2
F

2m

N0

6(kBTc )2

∫ ∞

0

dy

y

tanh y

cosh2 y

(
N0 =

mkF

2π2

)

• GP eq ⇐ (kFaF )−1 � +1 and T � Tc :

I0(r) ∼= −
m

4πaF
+

m2aF

8π

[
µB − 2V (r)−

ma2
F

2π
|∆(r)|2
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m2aF
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(
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Testing the LPDA eq vs the BdG eqs: ∆(r) for an isolated vortex
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with a factor 105 of
reduction in computational
time from BdG to LPDA !
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Comparison with MIT experiment (# 1):
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Comparison with MIT experiment (# 2):

rotating trap with Ω = 0.8 Ωr and T = (0.0, 0.1)TF

∗ : experimental values (multiplied by a common factor of 4)

↔ Feynman theorem satisfied only in (about) 1/4 of cloud!



Comparison with Innsbruck exper. (# 1):
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Comparison with Innsbruck exper. (# 2):

moment of inertia Θ = L/Ω in units of its classical value Θcl

for various couplings at T = 0

not too many vortices are needed to stabilize Θ at Θcl.

Yrast effect (of order of 1/N ∼= 10−5) before 1st vortex enters.



Conclusions & Perspectives:

♣ The LPDA equation for ∆(r) works well
when compared with BdG eqs over a wide
portion of coupling-vs-temperature diagram.

♣ It reduces to the GL and GP equations in the
appropriate (coupling and temperature) limits.

♣ Finding solutions with large vortex patterns is
now possible in terms of the LPDA equation.

♣ Future plans are to consider:

• Imbalanced spin populations

• Correlations beyond mean field

• Time-dependent version



Thank you for your attention !


