Meissner-like effect in neutral trapped Fermi gases with arbitrary interaction throughout the BCS-BEC crossover

Giancarlo Calvanese Strinati
Dipartimento di Fisica, Università di Camerino Camerino (MC), Italy
" 101° Congresso Nazionale SIF" Roma, 21-25 Settembre 2015

Motivations:

\star S. Simonucci, P. Pieri, and GCS, published as an article in Nature Physics (September, 2015).

In principle, the Bogoliubov-de Gennes (BdG) eqs

$$
\left(\begin{array}{cc}
\mathcal{H}(\mathbf{r}) & \Delta(\mathbf{r}) \\
\Delta(\mathbf{r})^{*} & -\mathcal{H}(\mathbf{r})^{*}
\end{array}\right)\binom{u_{\nu}(\mathbf{r})}{v_{\nu}(\mathbf{r})}=\epsilon_{\nu}\binom{u_{\nu}(\mathbf{r})}{v_{\nu}(\mathbf{r})}
$$

where $\mathcal{H}(\mathbf{r})=\frac{(i \nabla+\mathrm{A}(\mathbf{r}))^{2}}{2 m}+V(\mathbf{r})-\mu$, form the basis for the calculation of physical quantities for superconductors in inhomogeneous situations

the gap parameter $\Delta(\mathbf{r})$ varies with \mathbf{r} and is determined via the self-consistent equation:

$$
\Delta(\mathbf{r})=-v_{0} \sum_{\nu} u_{\nu}(\mathbf{r}) v_{\nu}(\mathbf{r})^{*}\left[1-2 f_{F}\left(\epsilon_{\nu}\right)\right]
$$

where
$v_{0}=$ coupling constant of contact interaction
$f_{F}(\epsilon)=\left(e^{\epsilon /\left(k_{B} T\right)}+1\right)^{-1}=$ Fermi function.
In practice, the use of the BdG equations is limited to a few situations (single vortex, a few vortices, Josephson effect, isolated solitons, ...) due to limitations in computer time and memory space.

Two kinds of questions:

- Fundamental question: To what extent is the detailed information contained in the BdG eqs really needed?
("old" question, raised by Eilenberger in 1968) And what happens when the inter-particle coupling gets strong? (BCS-BEC crossover)
- Practical question: How is it possible to account for experiments with ultra-cold Fermi gases (but with other systems as well), which may reveal the superfluid phase in the presence of complex arrays of vortices ?

The MIT experiment on vortex lattices [Nature 435, 1047 (2005)]:

Magnetic field [G]

Observation of vortex lattices in rotating Fermi gases provides definite evidence for superfluidity !

The Innsbruck experiment [New J. of Phys. 13, 035003 (2011)]:

\mathcal{P} vs temperature at unitarity $\quad\left(\Omega_{\text {trap }}\right.$ is fixed $)$

BdG eqs \rightarrow differential eqs for $\Delta(\mathbf{r}):$

There are cases when the BdG eqs can be replaced by (simpler to solve) differential equations for $\Delta(\mathbf{r})$:

- Ginzburg-Landau (GL) equation for strongly overlapping Cooper pairs [Gorkov (1959)]:

$$
\left[\frac{6 \pi^{2}\left(k_{B} T_{c}\right)^{2}}{7 \zeta(3) E_{F}}\left(1-\frac{T}{T_{c}}\right)+\frac{\nabla^{2}}{4 m}\right] \Delta_{\mathrm{GL}}(\mathbf{r})-\frac{3}{4 E_{F}}\left|\Delta_{\mathrm{GL}}(\mathbf{r})\right|^{2} \Delta_{\mathrm{GL}}(\mathbf{r})=0
$$

which holds close to T_{c} in the (extreme) BCS limit $\left(\mu \simeq E_{F}\right)$.

BdG eqs \rightarrow differential eqs for $\Delta(\mathbf{r}):$

- Gross-Pitaevskii (GP) equation for dilute composite bosons [Pieri \& GCS (2003)]:

$$
\begin{aligned}
& -\frac{\nabla^{2}}{4 m} \Phi(\mathbf{r})+2 V(\mathbf{r}) \Phi(\mathbf{r})+\frac{8 \pi a_{F}}{2 m}|\Phi(\mathbf{r})|^{2} \Phi(\mathbf{r})=\mu_{B} \Phi(\mathbf{r}) \\
& \quad \text { with } \quad \Phi(\mathbf{r})=\sqrt{\frac{m^{2} a_{F}}{8 \pi}} \Delta(\mathbf{r})
\end{aligned}
$$

which holds at low T in the BEC limit where $2 \mu \simeq-\varepsilon_{0}+\mu_{B}, \quad \varepsilon_{0}=\frac{1}{m a_{F}^{2}}=$ binding energy $a_{F}=2$-fermion scattering length $\quad\left(\mu_{B} \ll \varepsilon_{0}\right)$.

Small parameters for GL and GP eqs:

To derive the GL and GP eqs from the BdG eqs, one exploits the existence of a "small parameter" η :

$$
\begin{array}{ll}
\eta=\frac{|\Delta(r)|}{k_{B} T_{c}} \ll 1 & \text { for GL equation } \\
\eta=\frac{|\Delta(r)|}{|\mu|} \ll 1 & \text { for GP equation }
\end{array}
$$

Question: Can one do something better than this, and replace the BdG eqs by a differential equation for $\Delta(\mathbf{r})$ over an extended region of the "temperature vs coupling diagram" ?

Temperature vs coupling phase diagram of the BCS-BEC crossover:

Coarse graining of the BdG equations:

We have considered the following double coarse-graining procedure [S. Simonucci and GCS, PRB 89, 054511 (2014)]:

$$
\mathbf{r}^{\prime \prime}=\mathbf{R}+\tau+\rho
$$

$$
\Delta\left(\mathbf{r}^{\prime \prime}\right)=\tilde{\Delta}(\mathbf{R}) e^{2 i \mathbf{Q}(\mathbf{R}, \tau) \cdot(\mathbf{R}+\tau+\rho)}
$$

The LPDA differential equation for $\Delta(\mathbf{r})$:

After some manipulations and approximations based on the "smoothness" of $\Delta(\mathbf{r})$, from the BdG eqs one arrives at:

$$
-\frac{m}{4 \pi a_{F}} \Delta(\mathbf{r})=\mathcal{I}_{0}(\mathbf{r}) \Delta(\mathbf{r})+\mathcal{I}_{1}(\mathbf{r}) \frac{\nabla^{2}}{4 m} \Delta(\mathbf{r})-\mathcal{I}_{1}(\mathbf{r}) i \frac{\mathbf{A}(\mathbf{r})}{m} \cdot \nabla \Delta(\mathbf{r})
$$

The LPDA differential equation for $\Delta(\mathbf{r})$:

After some manipulations and approximations based on the "smoothness" of $\Delta(\mathbf{r})$, from the BdG eqs one arrives at:

$$
-\frac{m}{4 \pi a_{F}} \Delta(\mathbf{r})=\mathcal{I}_{0}(\mathbf{r}) \Delta(\mathbf{r})+\mathcal{I}_{1}(\mathbf{r}) \frac{\nabla^{2}}{4 m} \Delta(\mathbf{r})-\mathcal{I}_{1}(\mathbf{r}) i \frac{\mathbf{A}(\mathbf{r})}{m} \cdot \nabla \Delta(\mathbf{r})
$$

$$
\begin{aligned}
& \text { with } \begin{aligned}
\mathcal{I}_{0}(\mathbf{r}) & =\int \frac{d \mathbf{k}}{(2 \pi)^{3}}\left\{\frac{\left[1-2 f_{F}\left(E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})\right)\right]}{2 E(\mathbf{k} \mid \mathbf{r})}-\frac{m}{\mathbf{k}^{2}}\right\} \\
& \left.+\frac{\xi(\mathbf{k} \mid \mathbf{r})}{E(\mathbf{k} \mid \mathbf{r})^{2}} \frac{\partial f_{F}\left(E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})\right)}{\partial E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})}-\frac{\mathbf{k} \cdot \mathbf{A}(\mathbf{r})}{\mathbf{A}(\mathbf{r})^{2}} \frac{1}{E(\mathbf{k} \mid \mathbf{r})} \frac{\partial f_{F}\left(E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})\right)}{\partial E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})}\right\} \\
\text { where } \quad \xi(\mathbf{k} \mid \mathbf{r}) & =\frac{d \mathbf{k}}{2 \pi}-\bar{\mu}(\mathbf{r}) \quad, \quad \bar{\mu}(\mathbf{r})=\mu-V(\mathbf{k})-\frac{\mathbf{A}(\mathbf{r})^{2}}{2 m} \\
E(\mathbf{k} \mid \mathbf{r}) & =\sqrt{\xi(\mathbf{k} \mid \mathbf{r})^{2}+|\Delta(\mathbf{r})|^{2}} \quad, \quad E_{+}^{\mathbf{A}}(\mathbf{k} \mid \mathbf{r})=E(\mathbf{k} \mid \mathbf{r})-\frac{\mathbf{k} \cdot \mathbf{A}(\mathbf{r})}{m}
\end{aligned}
\end{aligned}
$$

Recovering GL and GP eqs from LPDA eq:

- GL eq $\Leftarrow\left(k_{F} a_{F}\right)^{-1} \ll-1$ and $T \simeq T_{c}$:

$$
\begin{aligned}
& \mathcal{I}_{0}(\mathbf{r}) \cong-\frac{m}{4 \pi a_{F}}+N_{0} \frac{\left(T_{c}-T\right)}{T_{c}}-\frac{7 \zeta(3)}{8 \pi^{2}} \frac{N_{0}}{\left(k_{B} T_{c}\right)^{2}}|\Delta(\mathbf{r})|^{2} \\
& \mathcal{I}_{1}(\mathbf{r}) \cong \frac{k_{F}^{2}}{2 m} \frac{N_{0}}{6\left(k_{B} T_{c}\right)^{2}} \int_{0}^{\infty} \frac{d y}{y} \frac{\tanh y}{\cosh ^{2} y} \quad\left(N_{0}=\frac{m k_{F}}{2 \pi^{2}}\right)
\end{aligned}
$$

- GP eq $\Leftarrow\left(k_{F} a_{F}\right)^{-1} \gg+1$ and $T \ll T_{c}$:

$$
\begin{array}{ll}
\mathcal{I}_{0}(\mathbf{r}) \cong-\frac{m}{4 \pi a_{F}}+\frac{m^{2} a_{F}}{8 \pi}\left[\mu_{B}-2 V(\mathbf{r})-\frac{m a_{F}^{2}}{2 \pi}|\Delta(\mathbf{r})|^{2}\right] \\
\mathcal{I}_{1}(\mathbf{r}) \cong \frac{m^{2} a_{F}}{8 \pi} & \left(\varepsilon_{0}=\frac{1}{m a_{F}^{2}}=-2 \mu+\mu_{B}\right)
\end{array}
$$

Testing the LPDA eq vs the BdG eqs: $\Delta(\mathbf{r})$ for an isolated vortex

Testing the LPDA eq vs the BdG eqs: $\Delta(\mathbf{r})$ for an isolated vortex

Comparison with MIT experiment $(\# 1)$:

rotating trap with:

$$
\begin{aligned}
& \frac{A(r)}{m}=\boldsymbol{\Omega} \times \mathbf{r} \\
& \Omega=0.8 \Omega_{\mathrm{r}} \quad(T=0)
\end{aligned}
$$

137 vortices

11 (bending) filaments

Comparison with MIT experiment $(\# 2)$:

rotating trap with $\Omega=0.8 \Omega_{\mathrm{r}}$ and $T=(0.0,0.1) T_{F}$

* : experimental values (multiplied by a common factor of 4)
\leftrightarrow Feynman theorem satisfied only in (about) $1 / 4$ of cloud!

Comparison with Innsbruck exper. (\# 1):

temperature dependence of $\Theta / \Theta_{c l}$ for $\Omega \rightarrow 0$ at unitarity

- - contributed by the "inner" (superfluid) portion of cloud
... contributed by the "outer" (normal) portion of cloud
- sum of the two contributions
- experimental data

Comparison with Innsbruck exper. (\# 2):

moment of inertia $\Theta=L / \Omega$ in units of its classical value Θ_{cl} for various couplings at $T=0$ not too many vortices are needed to stabilize Θ at Θ_{cl}. Yrast effect (of order of $1 / N \cong 10^{-5}$) before $1^{\text {st }}$ vortex enters.

Conclusions \& Perspectives:

\& The LPDA equation for $\Delta(\mathbf{r})$ works well when compared with BdG eqs over a wide portion of coupling-vs-temperature diagram.
\&. It reduces to the GL and GP equations in the appropriate (coupling and temperature) limits.
\&. Finding solutions with large vortex patterns is now possible in terms of the LPDA equation.
\& Future plans are to consider:

- Imbalanced spin populations
- Correlations beyond mean field
- Time-dependent version

Thank you for your attention!

