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Motivations:

* S. Simonucci, P. Pieri, and GCS, published as
an article in Nature Physics (September, 2015).

In principle, the Bogoliubov-de Gennes (BdG) eqs
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where H(r) = (VADF V/(r) — p, form the basis

2m
for the calculation of physical quantities for
superconductors in inhomogeneous situations
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the gap parameter A(r) varies with r and is
determined via the self-consistent equation:
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where
vog = coupling constant of contact interaction

fe(e) = (e/(&T) 4-1)~! = Fermi function.

In practice, the use of the BdG equations is limited
to a few situations (single vortex, a few vortices,
Josephson effect, isolated solitons, - - -) due to
limitations in computer time and memory space.



Two kinds of questions:

e Fundamental question: To what extent is the
detailed information contained in the BdG egs
really needed?

(“old" question, raised by Eilenberger in 1968)

And what happens when the inter-particle
coupling gets strong?  (BCS-BEC crossover)

e Practical question: How is it possible
to account for experiments with ultra-cold Fermi
gases (but with other systems as well), which
may reveal the superfluid phase in the presence
of complex arrays of vortices ?



The MIT experiment on vortex lattices
[Nature 435, 1047 (2005)]:
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Observation of vortex lattices in rotating Fermi
gases provides definite evidence for superfluidity !



The Innsbruck experiment [New J. of Phys. 13, 035003 (2011)]:
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BdG egs — differential eqs for A(r):

There are cases when the BdG eqgs can be replaced
by (simpler to solve) differential equations for A(r):

e Ginzburg-Landau (GL) equation for strongly
overlapping Cooper pairs [Gorkov (1959)]:
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which holds close to T, in the (extreme) BCS
limit (,u ~ E[:)



BdG egs — differential eqs for A(r):

e Gross-Pitaevskii (GP) equation for dilute
composite bosons [Pieri & GCS (2003)]:
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with  ®(r) = '";;F (r)

which holds at low T in the BEC limit where
21~ —ego + B, €0 = m%@ = binding energy

F

ar = 2-fermion scattering length  (ug < €o).



Small parameters for GL and GP egs:

To derive the GL and GP egs from the BdG egs,
one exploits the existence of a “small parameter” 7:

1A(r)|
= <1
T kT J for GL equation

1A(r)|
= <1
T J for GP equation

Question: Can one do something better than this, and
replace the BdG eqs by a differential equation for A(r) over an

extended region of the “temperature vs coupling diagram” 7



Temperature vs coupling phase diagram of
the BCS-BEC crossover:
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Coarse graining of the BdG equations:

We have considered the following double coarse-graining
procedure [S. Simonucci and GCS, PRB 89, 054511 (2014)]:
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The LPDA differential equation for A(r):

After some manipulations and approximations based on the
“smoothness” of A(r), from the BdG eqs one arrives at:

AR = To(r) A(r) + Ta(r) Z—mA(r) 4@/% VA(®r)
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The LPDA differential equation for A(r):

After some manipulations and approximations based on the
“smoothness” of A(r), from the BdG eqs one arrives at:
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Recovering GL and GP eqs from LPDA eq:

e GLeq <« (krap) '« -1 and T =~T.
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Testing the LPDA eq vs the BdG egs: A(r) for an isolated vortex
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Testing the
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LPDA eq vs the BdG eqs: A(r) for an isolated vortex
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Comparison with MIT experiment (# 1):
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Comparison with MIT experiment (# 2):
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Comparison with Innsbruck exper. (# 1):
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Comparison with Innsbruck exper. (# 2):
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Conclusions & Perspectives:

The LPDA equation for A(r) works well
when compared with BdG eqs over a wide
portion of coupling-vs-temperature diagram.

It reduces to the GL and GP equations in the
appropriate (coupling and temperature) limits.

Finding solutions with large vortex patterns is
now possible in terms of the LPDA equation.
Future plans are to consider:

e Imbalanced spin populations

e Correlations beyond mean field

e [ime-dependent version



Thank you for your attention !



