

101° Congresso Nazionale La Sapienza, 24/09/2015

Roma, 21-25 settembre 2015

Misura delle sezioni d'urto differenziali per la produzione di coppie tt nel canale l+jets nelle interazioni pp a √s=8 TeV con l'esperimento ATLAS a LHC

Valerio Scarfone

Universita` della Calabria & INFN Cosenza

Goals and motivation of the analysis

- Large cross-section of top quark pairs production allows detailed study of the differential cross sections
- Provide precise test of pQCD with a set of measurements that can be used to constrain various predictions, e.g.:
 - → Different generators (POWHEG, MC@NLO, MadGraph)
 - → Different tunes (POWHEG $h_{damp} = m_t$, $h_{damp} = \infty$)
 - \rightarrow Different QCD radiation models (IFSR)
 - → Different PDF sets (CT14nlo, NNPDF30nlo, MMHT2014nlo68cl, CJ12, METAv10LHC, HERA20NLO)
- Top-quark pairs production is a leading background to many Higgs analyses and BSM searches

Top reconstruction

The top reconstruction is identical at detector and particle levels with the exclusion of the neutrino that at particle level is taken from the truth info

- $W^{lep} = (I^{\pm} + \nu)$ neutrino p_{τ} from E_{τ}^{miss} using M_{W}^{PDG} constraint from $W \rightarrow I \nu$ decay
- Leptonic top = W^{lep} + closest b-jet
- W^{had} = non b-tagged jet pair with its invariant mass M_{ii} closest to M_{w}^{PDG}
- Hadronic top = W^{had} + the remaining b-jet

Event selection

Event selection		
Trigger	Single lepton	
Primary vertex	\geq 5 tracks with $p_{\rm T}$ > 0.4 GeV	
Exactly one	Muons: $p_{\rm T} > 25 {\rm GeV}, \eta < 2.5$	
isolated lepton	Electrons: $p_{\rm T} > 25 {\rm GeV}$	
	$ \eta < 2.47$, excluding $1.37 < \eta < 1.52$	
\geq 4 jets	$p_{\rm T} > 25 { m GeV}, \eta < 2.5$	
b-tagging	$\geq 2 b$ -tagged jets at $\epsilon_b = 70\%$	

	e+jets	μ +jets
tī	74000 ± 4700	92000 ± 5900
Single top	3600 ± 200	4400 ± 250
W+jets	3000 ± 300	4400 ± 400
Z+jets	1100 ± 550	570 ± 300
WW/WZ/ZZ	73 ± 40	67 ± 35
Non-prompt and fake lept.	2000 ± 900	1400 ± 600
Prediction	84000 ± 4900	103000 ± 6000
Data	89413	108131

- Same event selection is applied to the electron and muon channels
- Good data/theory agreement

The uncertainties in the table contain statistical and systematic contributions added in quadrature

Control plots

• Overall fair agreement at detector level between data and theory

Measurements

- Emphasis on top quark and tt pairs kinematics (transverse momentum, rapidity ...)
- Fiducial phase space ("*particle-level*") smaller extrapolation and uncertainties

• Full phase-space ("parton-level") larger extrapolation also to regions not covered by the detector, allowing comparisons with NLO and future differential NNLO calculations and combinations with CMS

Differential Cross-sections

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L} \cdot \Delta X^{i}} \cdot f_{\mathrm{eff}}^{i} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\mathrm{match}}^{j} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$$

- The electron and muon channels are summed linearly before the Unfolding
- Iterative Bayesian unfolding $(N_{itr} = 4)$ is applied to correct for selection efficiency and detector acceptance and resolution, so that the resulting spectrum can be compared with theoretical predictions

Systematics uncertainties

Results

Normalized differential x-sec

Normalized differential x-sec

Run II PDFs

MC@NLO generator (native CT10nlo PDF's) reweighted with Run II PDF's

Run II PDF sets enhance the agreement in large-rapidity regions

Conclusions

•This is an important measurement that allows a precise test of pQCD predictions, constraining MC generators, higher-orders calculations, and future NNLO differential predictions

•It can contribute to future PDF fits, allowing better determination of PDFs

•Differential cross section as function of transverse momentum and rapidity of top quark and top quark pairs are not well described by all MC generators in the high p_{τ} and y regions

Backup

Slides

τ leptons

• Particle level

Since only "final states" are taken in account, we actually don't look at the decay chains of the parton tops. We just care about leptons, jets and E_{T}^{miss} in the fiducial phase space

•Parton level

We check the first step decay chain of the W. A top that decays in $t \rightarrow b$ W, if $W \rightarrow \tau v$ is considered "leptonic" regardless the actual decay of the tau. So we have to correct for the dilepton contribution.

Absolute or normalized spectra ?

Absolute

- Contain full information
- o Normalized can be calculated from these, even if systematics have to be handled carefully
- Have a residual offset due to different acceptance of each MC generator that can lead to misleadingly high χ² values
- Normalized
 - Smaller systematics
 - Present the truly important piece of information: shape
 - Can still be handled for PDF fits (preference for abs, tough)
 - The way of CMS and previous ATLAS publications (boosted top pT is absolute only)
- After discussion with conveners and EB, we support publishing normalized distributions and keep absolute ones as auxiliary material if necessary.

Parton level Unfolding (Full Phase space)

$$\frac{\mathrm{d}\sigma^{\mathrm{full}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L}\cdot\mathcal{B}\cdot\Delta X^{i}}\cdot\hat{f}_{\mathrm{eff}}^{i}\cdot\sum_{j}\hat{\mathcal{M}}_{ij}^{-1}\cdot\hat{f}_{\mathrm{acc}}^{j}\cdot\hat{f}_{\mathrm{ljets}}^{i}\cdot\left(N_{\mathrm{reco}}^{j}-N_{\mathrm{bg}}^{j}\right)$$

Correction factor to remove dilepton contribution 18