Constraining the CMB temperature evolution with SZ measurements from Planck data

Gemma Luzzi¹, R. T. Génova-Santos², C.J.A.P. Martins³, M. De Petris¹, L. Lamagna¹

¹Dipartimento di Fisica, Sapienza - Università di Roma

²Instituto de Astrofísica de Canarias

³Centro de Astrofísica, Universidade do Porto

```
SIF - 101° Congresso Nazionale
Dip. Fisica, Roma, 21-25 Settembre 2015
```

How to test fundamental assumptions of cosmology?

CMB: Black-body spectrum

The COBE-FIRAS experiment revealed a very precise black-body spectrum with temperature $T_0 = (2.725 \pm 0.002)$ K Mather et al. 1999.

CMB temperature evolution

Strong prediction of the standard model $\Rightarrow T_{CMB}(z)=T_0(1+z)$, but violated in many non standard models (Jaeckel et al. 2010). Testing its validity is an important task both for cosmology and fundamental physics.

Luzzi, Génova-Santos, Martins, De Petris, Lamagna Constraining the CMB temperature evolution with SZ spectra

$T_{CMB}(z)$: Previous measurements

Two astrophysical techniques probe $T_{CMB}(z)$ at $z \neq 0$:

• z < 1 SZ effect towards clusters.

Fabbri et al. Astrop. Space Sci. 59 (1978) Rephaeli ApJ.241 (1980)

First measurement: Battistelli et al. ApJ 580, (2002)

• z > 1 Quasar absoption line spectra

Bahcall and Wolf, ApJ 152 (1968)

First measurement: Srianand et al. Nature 408 (2000)

Phenomenological parametrization: $T_{CMB}(z) = T_0(1 + z)^{1-\beta}$

Lima et al. MNRAS 312 (2000)

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

The Sunyaev Zel'dovich Effect

How to measure $T_{CMB}(z)$ from SZ

Fabbri R., F. Melchiorri & V. Natale. Ap&SS 59, 223, 1978; Rephaeli Y Ap.J. 241, 858, 1980

 $\Delta I_{SZ} = \Delta I_{SZ}(x)$ x = $h\nu(z)/kT(z) = h\nu_0/kT_0$, z-invariant only for standard scaling of T(z). In all other scenarios: small dilation-contraction of the SZ spectrum.

Accurate SZ spectra fundamental!

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

Data

- Planck temperature maps ^a(30, 44, 70, 100, 143, 217, 353, 545, 857 GHz)
- Subsample of Planck SZ catalog ^a: 103 clusters with z: 0.01-0.94
- SZ union mask ^a (to remove extragalactic point sources)
- Ancillary maps for thermal dust emission and CMB fluctuations cleaning (IRIS $^{\rm b},$ 857 GHz, LGMCA $^{\rm c})$
- $\bullet\,$ X-ray data from BAX $^{\rm d}$ and MCXC $^{\rm e}$

- ^b M.-A. Miville-Deschênes Astrophys. J. Suppl. 157 (2005)
- $^{\rm c}$ J. Bobin et al. Astron. Astrophys. 563 (2014)
- ^d R. Sadat et al., Astron. Astrophys. 424 (2004)
- ^e R. Piffaretti et al. Astron. Astrophys. 534 (2011)

・ロン ・回と ・ヨン ・ヨン

3

 $^{^{\}mathrm{a}}$ Planck Legacy Archive, http://pla.esac.esa.int/pla.

CMB and Dust cleaning

Cleaned mini-maps around each cluster positions.

Find $\alpha(\nu)$ that minimizes the variance of:

 $M_{
m dc}(\nu, x) = M(\nu, x) - \alpha(\nu)M_{
m d}(x)$

$$\alpha(\nu) = \frac{\sum_{i} M(\nu, x_{i}) M_{\mathrm{d}}(x_{i})}{\sum_{i} M_{\mathrm{d}}(x_{i})^{2}}$$

Diego et al. MNRAS 336 (2002)

 $M_{\rm c}(\nu,x) = M_{
m dc}(\nu,x) - M_{
m CMB}(x)$

Also for z=0.389 and θ_{500} =4.5arcmin SZ signal evident at 143 and 345 GHz \Rightarrow efficiency of our cleaning metodologhy

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

Reliable SZ spectra

Measured SZ fluxes. Solid lines: best-fit spectra Cyan lines: 1σ error on $T_{CMB}(z)$ \Rightarrow Importance of including high frequency measurements for $T_{CMB}(z)$ extraction

Case of high z clusters with $T_e > 11 \rm keV$: using relativistic corrections changes $T_{CMB}(z)$ by $\sim 2\%$

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

Individual measurements of $T_{CMB}(z)$

Method for the $T_{CMB}(z)$ extraction at cluster redshift:

- Use of SZ intensity change, $\Delta I_{SZ}(\nu)$ at different ν
- Single likelihoods for each clusters, as in Luzzi et al ApJ 705 (2009)
- MCMC approach: cluster parameters $(\tau, v_p, T_e) + T_{CMB}$ +calibration uncertainty
- use of relativistic corrections
- individual determination of $T_{CMB}(z)$ with precision up to 3%, (7% on average on full sample)

・ロト ・回ト ・ヨト ・ヨト

Results

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

T vs z all

Combined constraints (SZ + quasar absorption line spectra): $\beta = 0.013 \pm 0.011$

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

Comparison with latest SZ constraints

- $\beta = 0.017^{+0.030}_{0.028}$, 158 SPT cl, z: 0.05-1.35 [1] Saro et al. 2014
- $\beta = 0.009 \pm 0.017$, 813 stacked Planck cl, z: 0.01-0.94 [2] Hurier et al. 2014
- $eta=-0.007\pm0.013$, 481 X-ray cl, $z\leq0.3$ [3] De Martino et al. 2015
- $\beta = 0.012 \pm 0.016$, 103 Planck clusters, z: 0.01-0.94 [4] Luzzi et al. 2015

Future works

- Combine our constraint on β with indirect measurements from distance measurements to get the first sub-percent constraints on β (Avgoustidis et al. in preparation).
- Extend our analysis to a larger sample, improving the homogeneity of the available X-ray informations.

・ロト ・回ト ・ヨト ・ヨト

Conclusions

- Reliable SZ spectra in the range 70-353 GHz for a subsample of the Planck SZ cluster catalog with known X-ray properties.
- Individual determinations of $T_{CMB}(z)$ for 103 clusters with a precision of up to 3%.
- We studied possible deviations of the form $T_{CMB}(z) = T_0(1+z)^{1-\beta}$ and get constraint $\beta = 0.012 \pm 0.016$, standard model consistent.
- Our results are compatible with, and at the same level of precision as, previous results based on SZ and quasar absorption line spectra.
- A COrE-like experiment, with extended frequency coverage wrt Planck \Rightarrow significant further improvements.

CMB cleaning

Removing CMB fluctuations: subtracting 217 GHz map or CMB map from component separation

Subtraction of 217GHz introduce degeneracy between τ and T_{CMB} : not good for CMB evolution study. \Rightarrow CMB from component separation: LGMCA the only one showing no clear SZ residuals.

Luzzi, Génova-Santos, Martins, De Petris, Lamagna Constraining the CMB temperature evolution with SZ spectra

Dust cleaning II

Last line: maps cleaned using the Planck dust model. The negative feature at 217 GHz comes from the SZ residuals \Rightarrow unsuitability of these maps.

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

Dust cleaning III

Stacks of the Planck dust model, at frequencies between 70 and 353 GHz, at the positions of the 107 clusters of our catalogue.

イロト イポト イヨト イヨ

Aperture photometry - ring selection

Integrating all pixels in a circle of radius Θ_1 and subtracting a background level in an external ring between radii θ_2 and θ_3 with: $\theta_1 = max[\theta_{500}, 0.75\theta_{FWHM}(\nu)]$ and $[\theta_2, \theta_3] = [2.5, 3.5]\theta_1$

Comparison with latest SZ constraints

- $\beta = 0.017^{+0.030}_{0.028}$, 158 SPT cl, z: 0.05-1.35 [1] Saro et al. 2014
- $\beta = 0.009 \pm 0.017$, 813 stacked Planck cl, z: 0.01-0.94 [2] Hurier et al. 2014
- $eta = -0.007 \pm 0.013$, 481 X-ray cl, $z \leq 0.3$ [3] De Martino et al. 2015
- $\beta = 0.012 \pm 0.016$, 103 Planck clusters, z: 0.01-0.94 [4] Luzzi et al. 2015
- wrt [1]: Larger spectral coverage of Planck wrt SPT data
- wrt [2]:

- Per cluster analysis: better use of X-ray information and SZ spectral properties.

- Maps @ $\nu \geq$ 217GHz degraded to 5 and not 10 arcmin, improving S/N at high frequencies.

- Use of the 70 GHz channel
- CMB removal
- wrt [3]: similar cleaning procedure, smaller sample but larger redshift lever arm.

Future works

Same cluster sample to study:

- The Hubble diagram: first local measurement of *H*₀ with Planck clusters!
- The distance duality relation, $\eta(z) = D_L(z)/[(1+z)^2 D_A(z)] = 1$, for the standard model.
- Combine our constraint on β with indirect measurements from distance measurements to get the first sub-percent constraints on β (Avgoustidis et al. in preparation).
- Extend our analysis to a larger sample, improving the homogeneity of the available X-ray informations.

イロト イヨト イヨト イヨト

The Comptonization parameter

$$\Delta \mathbf{I} = I_0 h(\mathbf{x}) \sigma_T \int n_e dl \left[\theta \mathbf{f}(\mathbf{x}) - \beta + R(\mathbf{x}, \theta, \beta) \right]$$

 $x = h \nu kT$ $\theta = kT_e/mc^2$ $\beta = V/c$

R function= relativistic corrections

(Rephaeli 1995-Itoh et al. ApJ 502, 7, 1998 - Shimon & Rephaeli ApJ 575, 12, 2002)

$$\Delta I_{TSZ} = g(x) I_o y$$

$$\Delta I_{KSZ} = -\beta h(x) I_o \tau$$

$$y = \int \frac{kT_e}{m_e c^2} \sigma_T n_e d\ell = \frac{kT_e}{m_e c^2} \tau = y_0 f(\theta)$$

$$Y = \int y d\Omega$$

$$\Omega = \text{solid angle occupied by}$$
the source in the sky
$$\Delta T_{TSZ} = f(x) y T_{CMB}$$

$$\Delta T_{KSZ} = -\beta \tau T_{CMB}$$

Luzzi, Génova-Santos, Martins, De Petris, Lamagna

The SZ in thermodynamic temperature

Luzzi, Génova-Santos, Martins, De Petris, Lamagna Constraining the CMB temperature evolution with SZ spectra

Timeliness in perspective of Euclid and COrE

Euclid is an approved ESA mission to map the geometry and the evolution of the dark universe: dark matter, dark energy and modified gravity.

- Weak gravitational lensing.
- BAO.
- Deep survey: \sim 3000 low-z SNIa.

BAO+SNIa \Rightarrow improve constraints on $T_{CMB}(z)$ and $\eta(z)$.

COrE Cosmic Origins Explorer, ESA Cosmic Vision (2015-2025) project shortlisted but not selected. New proposal for COrE+ project: extended frequency coverage \Rightarrow improving constraints on T_{CMB}(z), H₀ and η (z) with respect to Planck.