Elettronica di front end per la camera a deriva del nuovo tracciatore di MEG
Summary

• MEG experiment upgrade

• The MEG tracker upgrade

• Drift chamber signal characteristics

• Front End schematic

• Front End Board

• Preliminary tests and results

• Conclusions and next steps
The MEG experiment

High energy Particle physic experiment @ Paul Scherrer Institute (PSI, Zurich)

- High resolution detector
- High performance electronics

The decay is reconstructed to look for a back-to-back positron and monochromatic photon

\[\text{BR} = \frac{N_{\mu \rightarrow e\gamma}}{N_{\mu \rightarrow \text{anything}}} \]

\[10^{-54} \text{SM} \approx 10^{(-12)} - 10^{-14} \text{ SUSY} \]

Momentum conservation
Energy conservation

\[\begin{align*}
E_\mu &= E_e + E_\gamma \\
0 &= \vec{p}_e + \vec{p}_\gamma
\end{align*} \]
MEG Drift Chamber Upgrade

Improvement on granularity, resolution and efficiency
Resolution x-y: 120 µm
(210µm present MEG)
Resolution z: 300 µm
(800µm present MEG)

Cylindrical wire DC:
12 cylinder sectors
10 layers per sector
8 cells per layer

gas mixture: 85% He-15% iC₄H₁₀

Cells are placed along beam axis with a stereo angle (8°) in order to reconstruct z coordinate by combining the information of adjacent layers

tracker: measures e⁺ energy and momentum

Liquid xenon calorimeter: detects gamma ray

Cryostats with PraepENCHMARK.

Timing counter: measures e⁺ time arrival

Field and guard wires: 50 µm diam Al(Ag) => 2688 wires
Potential wires: 40 µm diam Al(Ag) => 7680 wires
Sense wires: 20 µm diam W(Au) => 1920 wires

Stereo angle +
Stereo angle -
Guard layer

Aurora Pepino gas mixture: 85% He-15% iC₄H₁₀
In order to amplify signal coming from Drift Chamber a multistage, low noise and low distortion Front End was designed that provides a total voltage gain of the order of 10 with a suitable bandwidth. Finally signals will be digitized by the MEG Wave Dream digitizer developed at PSI.
Typical Drift Chamber Signal

- **FE** is an essential aspect for reaching acceptable time resolution and therefore an efficient spatial resolution on particle identification purpose.

- **Cluster timing technique** consists in measuring the timing of all the individual ionization clusters in the gas due to a high energy particle crossing through => promising approach to reach resolution below 100 µm.

- Opposed to the determination of the impact parameter, which uses only the arrival time of the first cluster, it produces a bias free estimator using also the timing of the clusters following the first one.

- Study of the signals spectral density done using a single 8 mm diameter drift tube with the 90% helium - 10% isobutane gas mixture.

- Signal bandwidth is of the order of 1 GHz.

- Peak separation clusters: few ns to few tens of ns => separated pulses without overlapping.

Low noise and low distortion

Wide Bandwidth (1GHz)

Gain ~ 10

Low power
Front End boards arrangement

3 different card versions need for DC layers stacking

Right
Centre
Left
The input network provides decoupling and protection, signal amplification is realized with a double gain stage.

Analog Device op-amp **ADA4927** (first gain stage). It is a low noise (input voltage noise of only 1.3 nV/√Hz), ultralow distortion, high speed, current feedback differential amplifier.

The **THS4509** by Texas Instruments (second gain stage and output driver). It is a wideband, fully differential operational amplifier with a very low noise (1.9 nV/√Hz), and extremely low harmonic distortion of −75 dBc HD2 and −80 dBc HD3 at 100 MHz. It is ideal for pulsed applications.
Front End Board

• **Input connector**
 – Custom made by Sullins (edge card type)

• **Output connector**:
 – miniSAS HD internal

• **Ground**:
 – Output connector ground and board ground separated in order to preserve ground loops
 – Possibility to connect the two grounds throughout 0 ohm resistors

• **HV**:
 – Low cost, high reliability connector: Faston
 – HV supply will take place by means of an external wire soldered

• **Layout**:
 – Channels distance to guarantee electrical insulation: **0.6 mm**
 – Central channels distance: **1 mm**
 – Power dissipation edge: **2.9 mm** (2.3 mm reserved for mechanical rail - 0.6mm for electrical insulation)
 – HV decoupling capacitors arranged in order to make board more robust
A power supply board based on the same ICs (LTM4614EV, LTM8022V) used on the WD board to power the FE has built. The board host a receiver (differential to SE) to test cables/FE cards.

After 5m cable long
Conclusions and next steps

- MEG experiment is currently under upgrade in order to increase the decay sensitivity by improving the experimental resolutions.

- The upgrade of the positron tracker consists in a new cylindrical wire drift chamber, with the axis parallel to the muon beam.

- The characteristics of the drift chamber signal establish the Front End Electronics requirements.

 The time separation between different ionizations clusters goes from a few nanoseconds to a few tens of nanoseconds and the main signal information content is contained within a bandwidth of 1 GHz.

- In order to separate in time the single pulses due to the different ionization clusters, a large signal sampling rate and a **low noise and distortion electronics is necessary**.

- The Front End Electronics is a multichannel board based on a double stage gain amplifier providing a **bandwidth** of 1 GHz and a **gain** of the order of 10.

- In order to balance the attenuation of the output cable, a **pre-emphasis** on both gain stages has been implemented.

- The eight channel board preliminary tests exhibits a 3 dB bandwidth of 1 GHz thanks to the implemented pre-emphasis which introduces a high frequency peak the voltage gain is of the order of 10.

- **NEXT steps:**

 - crosstalk measurements
 - signal integrity
 - tests on DC
References

1. MEG collaboration "MEG Upgrade Proposal"

2. Adam et al. EUR Ph Journal C 73 (4) 2013 1-59 "The MEG detector for \(\mu \rightarrow e \gamma \) decay search"

3. Cascella, Grancagnolo, Tassielli "Cluster Counting/timing Techniques for Drift Chambers" 1st Conference on Charged Lepton Flavor Violation

4. M. Grassi "A new cylindrical drift chamber for MEG II experiment"

5. L. Cappelli, P. Creti, F. Grancagnolo, A. Pepino, G. Tassielli(a,c,d) "A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board" 12th Pisa Meeting on Advanced Detectors

14. ADA4927 datasheet "Ultralow Distortion Current Feedback Differential ADC Driver"

15. THS4509 datasheet "Wideband, low-noise, low-distortion, fully- differential amplifier"