DESIGN OF PATCHY POLYMERS

INTERPLAY BETWEEN GEOMETRICAL CONSTRAINS

AND ALPHABET SIZE

Cardelli C., Coluzza I., Bianco V.,Computational Physics Group, Physics Department, University of Vienna

universität

What allows different heteropolymers to fold?

Protein
Patchy Polymer

universität
 wien

What allows different heteropolymers to fold?

- Specific sequences fold into stable structures
- Made by 20 different types of amminoacids

Specific sequence

Protein

What allows different heteropolymers to fold?

- Valence is the key to understand protein folding
- The system is designable if a minimum number of valence limiting interactions is included \rightarrow reduce the configurational space of compact structures

Coluzza, I., \& Dellago, C. (2012).. Journal of Physics: Condensed Matter, 24(28), 284111
Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., \& Dellago, C. (2013). Physical Review Letters, 110(7), 075501.
Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., \& Dellago, C. (2012). Soft Matter, DOI, 10.1039/2sm26967h.

universität

wien

What allows different heteropolymers to fold?

- Valence is the key to understand protein folding
- The system is designable if a minimum number of valence limiting interactions is included \rightarrow reduce the configurational space of compact structures

Protein

Protein model on lattice

universität

Patchy Polymers as bionic proteins

- Following this principle we can copy protein design and folding into an artificial system

Patchy Polymer

universität

Patchy Polymers as bionic proteins

- Following this principle we can copy protein design and folding into an artificial system
- Valence = directional interactions between the patches

Patches: directional interaction

Patchy Polymer

universität

Patchy Polymers as bionic proteins

- Following this principle we can copy protein design and folding into an artificial system
- Valence $=$ directional interactions between the patches
- Specific sequence $=$ alphabet of different isotropic interactions

Patches: directional interaction

Patchy Polymer

universität
 wien

Patchy Polymers as bionic proteins

universität

Patchy Polymers as bionic proteins

- Production of novel materials with specific self-assembly properties

Peter van Oostrum et al. BOKU, Vienna Austria

universität

Design and Folding of Patchy Polymers

universität

Design and Folding of Patchy Polymers

universität

wien

Design and Folding of Patchy Polymers

DESIGN

universität
 wien

Design and Folding of Patchy Polymers

DESIGN

FOLDING

universität

wien

How does the folding depend on the number and the structure of the patches?

The 1 patch is free to rotate with respect to the backbone

Free energy landscape vs Distance Root Mean Square Displacement (DRMSD) for one free patch with alphabet size of 3 .

universität

wien

How does the folding depend on the number and the structure of the patches?

The 3 patches are free to rotate with respect to the backbone

Free energy landscape vs DRMSD for 3 free patches with alphabet size of 3 .

universität

wien

How does the folding depend on the number and the structure of the patches?

The 1 patch is constrained with respect to the backbone

Free energy landscape vs DRMSD for one patch constrained to the backbone with alphabet size of 3 .

universität

wien

How does the folding depend on the number and the structure of the patches?

The
2
patches
are constrained with respect to the backbone

Free energy landscape vs DRMSD for 2 patches constrained to the backbone with alphabet size of 3 .

universität

wien

How does the folding depend on the alphabet size?

Free energy landscape vs DRMSD for a system with one free patch with different alphabet size. Only the sequence with alphabet size of 20 folds into the target structure.

universität

wien

How does the folding depend on the alphabet size?

Free energy landscape vs DRMSD for a system with one free patch with different alphabet size. Only the sequence with alphabet size of 20 folds into the target structure.

universität
 \section*{wien}

How does the folding depend on the alphabet size?

Free energy landscape vs Distance Root Mean Square Displacement (DRMSD) for three free patches with alphabet size of 3.

universität

wien

How does the folding depend on the alphabet size?

Free energy landscape vs Distance Root Mean Square Displacement (DRMSD) for three free patches with alphabet size of 10.

universität
 \section*{wien}

How does the folding depend on the alphabet size?

Free energy landscape vs Distance Root Mean Square Displacement (DRMSD) for three free patches with alphabet size of 20.

universität

wien

How does the folding depend on the alphabet size?

Free energy landscape vs DRMSD for three free patches with different alphabet sizes.

universität

wien

How does the folding depend on the alphabet size?

Free energy landscape vs DRMSD for one and two patches constrained to the backbone with different alphabet sizes. All systems fold into the target structures.

universität
 wien

Conclusions

- Polymers with free patches fold only with large enough alphabets
- Polymers with patches constrained to the backbone fold also with small alphabets

The system is designable if:
The alphabet is increased OR
The valence reduces the space of compact structures (directional interactions: patches)

universität

Acknowledgements

- Prof. Christoph Dellago and Dr. Ivan Coluzza

- Theory and simulations of designable modular bionic proteins
- Dr. Valentino Bianco

- Star polymers with a temperature-dependent valence: empty liquids from soft building blocks
- Dr. Lorenzo Rovigatti

- Automated Bio Marker (ABM) - In silico automated tumor targeting
- Dr. Luca Tubiana

- Computational protein design of highly selective tumour targeting drugs with the Vienna Protein Simulator
- Msc. Francesca Nerattini

universität

wien

How does the folding depend on the number and the structure of the patches?

Free energy landscape vs DRMSD for three systems with different valence. The alphabet size is fixed to 3 . Only the structure with one constrained patch folds into the target structure.

