Single File escape dynamics in microfluidic channels

Emanuele Locatelli

Computational Physics Group University of Vienna

Conferenza della Società Italiana di Fisica
Roma, 25 September 2015

Theory

Dipartimento di Fisica Galileo Galilei

Experiments

In collaboration with Dr. Stefano Pagliara
Prof. Ulrich Keyser group

UNIVERSITY OF
CAMBRIDGE
Cavendish
Laboratory BS

Single File Diffusion

SFD ingredients:

- Order preservation

Free diffusion between collision events

SFD - examples

Diffusion in micro/nanoporous materials

Hahn, Karger, Kukla, Phys. Rev. Lett., (1996)

Mukherjee, et al., ACS Nano (2010)

SFD - examples

Transport of ions through nanopores

Hodgkin, Keynes,
J. Physiol., (1955)

Jensena, et al., PNAS (2010)

SFD of colloidal particles

620 nm particles diffusing in the baths

Trapping and dragging particles with HOTs

Array of particle single files, $t=0$

Single file escape processes, $t=18 \mathrm{~s}$ (laser off) d)

Experimental data

$$
N=3
$$

Experimental data

Emptying process

$-L / 2 \quad \boldsymbol{x}$ (MD units) $L / 2$
absorbing boundary
absorbing boundary
We want to characterize the probability of having at least one particle inside the channel $\left[-\mathrm{L}_{c} / 2, \mathrm{~L}_{c} / 2\right] \quad S_{1}\left(t \mid N, L_{c}, L_{0}\right)$

Mean First Passage Time \longrightarrow Characteristic survival time

$$
T_{1}\left(N, L_{c}, L_{0}\right)=\int_{0}^{\infty} S\left(t \mid N, L_{c}, L_{0}\right) d t
$$

Emptying process

$-L / 2 \quad \boldsymbol{x}$ (MD units) $L / 2$
absorbing boundary
absorbing boundary
We want to characterize the probability of having at least one particle inside the channel $\left[-\mathrm{L}_{c} / 2, \mathrm{~L}_{c} / 2\right] \quad S_{1}\left(t \mid N, L_{c}, L_{0}\right)$

For Single File systems we can reconstruct this process exactly, using the Reflection Principle Method

Reflection principle method

Mapping of the Single File into a non-interactive system
Interacting
$t=t_{1}$

Reflection Principle

Reflection principle method

Mapping of the Single File into a non-interactive system

Interacting
$t=t_{1}$
$t=t_{2}$

Reflection Principle

Reflection principle method

Mapping of the Single File into a non-interactive system

Interacting

$$
t=t_{1}
$$

$$
t=t_{2}
$$

$$
t=t_{3}
$$

\square
1

Reflection Principle

1

Reflection principle method

Mapping of the Single File into a non-interactive system

Essential ingredients:

- Identical particles
- Elastic collisions

Reflection principle method

Mapping of the Single File into a non-interactive system

SFD - Emptying probability

Using the Reflection Principle method, it is possible to map a Single File system to the non-interactive equivalent

SFD - Emptying probability

Using the Reflection Principle method, it is possible to map a Single File system to the non-interactive equivalent

Single File of point-like particles (uniform initial conditions):

$$
1-\frac{S_{1}\left(t \mid N, L_{c}, L_{0}\right)}{\downarrow}=\left[1-\frac{\left.S_{1}\left(t \mid 1, L_{c}, L_{0}\right)\right]^{N}}{\downarrow}\right.
$$

N particles survival probability

SFD - Emptying probability

SFD - Mean Emptying Time

It is possible to integrate the last formula to obtain an analytical expression for the Mean Emptying Time, valid for point-like particles

$$
T_{1}\left(N, L_{c}, L_{0}\right)=\frac{L_{c}^{2}}{D_{1}} g\left(N, \frac{L_{0}}{L_{c}}\right)
$$

Valid in presence of small forces $\quad k_{B} T \gg F_{e} L_{c}$

SFD - Mean Emptying Time

SFD - Mean Emptying Time

It is also possible to include excluded volume contributions to the Mean Emptying Time using an effective theory, defining an effective channel length

$$
L_{e f f}\left(N, L_{c}, L_{0}, \Gamma, R\right)=\frac{\sum_{k=1}^{N}\left[T_{k}-T_{k+1}\right]\left(L_{c}-2(k-1) R\right)}{T_{1}}
$$

SFD - Mean Emptying Time

It is also possible to include excluded volume contributions to the Mean Emptying Time using an effective theory, defining an effective channel length

$$
L_{e f f}\left(N, L_{c}, L_{0}, \Gamma, R\right)=\frac{\sum_{k=1}^{N}\left[T_{k}-T_{k+1}\right]\left(L_{c}-2(k-1) R\right)}{T_{1}}
$$

and substituting it into the analytical expression valid for point-like particles

$$
T_{1}\left(N, L_{c}, L_{0}, R\right)=\frac{L_{e f f}\left(N, L_{c}, L_{0}, R\right)^{2}}{D_{1}(R, \Phi)} g\left(N, \frac{L_{0}}{L_{c}}\right)
$$

SFD - Mean Emptying Time

SFD - Mean Emptying Time

SFD - Mean Emptying Time

Conclusions

\checkmark We studied the escape properties of Single File systems of colloidal particles in presence of absorbing boundaries
\checkmark We studied the emptying process, finding an analytical solution for the Mean Emptying Time either in the presence and in the absence of an external force
\checkmark We provided an effective theory to account for excluded volume contributions to the Mean Emptying Time
\checkmark These results are in excellent agreement with experimental data of colloidal particles in microfluidic channels

Many thanks to:
My supervisors Fulvio Baldovin
Enzo Orlandini
Matteo Pierno

All the people of

Dr. Pagliara and Prof. Keyser @ Cavendish Lab, Cambridge

SFD - MSD sketch

Jepsen, D., (1965)
Harris, T. E., (1965)
Levitt, D., (1973)
Kollmann, M., (2003)

Ballistic

SFD - MSD sketch

Jepsen, D., (1965)
Harris, T. E., (1965)
Levitt, D., (1973)
Kollmann, M., (2003)

Ballistic + Early time diffusion

SFD - MSD sketch

Jepsen, D., (1965)
Harris, T. E., (1965)
Levitt, D., (1973)
Kollmann, M., (2003)

Ballistic + Early time diffusion + Subdiffusion

SFD - MSD sketch

Ballistic +Early time diffusion $\boldsymbol{+}$ Subdiffusion $\boldsymbol{+}$ Long time diffusion

First passage statistics

Survival probability

Probability that a particle, started from x_{0}, is still inside $[-L / 2, L / 2]$ at time t

First passage statistics

Survival probability

Probability that a particle, started from x_{0}, is still inside $[-L / 2, L / 2]$ at time t

Mean First Passage Time \longrightarrow Characteristic survival time

$$
T_{1}\left(\mathbf{x}_{0}, L\right)=\int_{0}^{\infty} S\left(t \mid \mathbf{x}_{0}, L\right) d t
$$

SFD of colloidal particles - experimental setup

from Pagliara, Schwall, Keyser (2012)

SFD of colloidal particles - experimental setup

from Pagliara, Schwall, Keyser (2012)

- PDMS chip is obtained by replica molding
- Chamber is made of two reservoires connected by eight sub-micrometric channels

from Pagliara, et.al (2011)

Experimental data

Experimental data

Experimental data

Experimental data

