

CALET (Calorimetric Electron Telescope)

Paolo Brogi - Universita' di Siena and INFN Pisa

- CALET is an instrument primarily dedicated to the observation of electrons in the TeV region to provide crucial information on nearby acceleration sources and perform indirect searches of dark matter.
- It will also study cosmic rays from proton to Fe and Ultra Heavy ions (26 < Z < 40). Energy spectra, relative elemental abundances and secondary-to-primary ratios will be measured.
- ♦ CALET was launched from Tanegashima Space Center on August 19th, 2015 with the Japanese H2-B rocket. The HTV-5 Transfer Module docked on the ISS on August 24th.
- $\diamond~$ CALET is now installed on port #9 of JEM-EF.
- \diamond An initial 5-years period of observations are planned

CALorimetric Electron Telescope (CALET): INSTRUMENT OVERVIEW

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Function	Charge Measurement (Z = 1 - 40)	Arrival Direction, Particle ID	Energy Measurement, Particle ID
Sensor (+ Absorber)	Plastic Scintillator : 2 layers Unit Size: 32mm x 10mm x 450mm	SciFi : 16 layers Unit size: 1mm ² x 448 mm Total thickness of Tungsten: 3 X ₀	PWO log: 12 layers Unit size: 19mm x 20mm x 326mm Total Thickness of PWO: 27 X ₀
Readout	PMT+CSA	64 -anode PMT+ ASIC	APD/PD+CSA PMT+CSA (for Trigger)

SIF - Roma, September 25, 2015

CALET/CAL Shower Imaging Capability

- □ CALET is equipped with a **thick**, **homogeneous calorimeter** (TASC) that allows to extend electron measurements into the TeV energy region with total e.m. shower containment.
- □ Coupled with a high granularity imaging pre-shower calorimeter (IMC), it can achieve an excellent electron energy resolution (better than 2% above 100 GeV) and accurately identify the starting point of electromagnetic showers. Combined, TASC+IMC powerfully separate electrons from the abundant protons with a rejection power ~10⁵.
- □ A dedicated charge detector (CHD) + multiple dE/dx track sampling in the IMC allow to identify individual nuclear elements from proton to Z=40.

CALET Expected Performance with electrons

1 CALET Main Target: Identification of Electron Sources

Some nearby sources, e.g. Vela SNR, might have unique signatures in the electron (+positron) energy spectrum in the TeV region (Kobayashi et al. ApJ 2004)

CALET main science objectives

Science Objectives	Observation Targets	
① Nearby Cosmic-ray Sources	Electron spectrum in trans-TeV region	
2 Dark Matter	Signatures in electron/gamma energy spectra in the 10 GeV – 10 TeV region	
③ Origin and Acceleration of Cosmic Rays	p-Fe up to the multi-TeV region, Ultra Heavy Nuclei	
④ Cosmic–Ray Propagation in the Galaxy	B/C ratio up to a few TeV /n	
5 Solar Physics	(A.Ibarra et al. 2010) Electron flux below 10 GeV	
6 Gamma-ray Transients	Gamma-rays and X-rays in 7 keV – 20 MeV	

Gamme
 ② Indirect Dark Matter Search with Electron.
 → CALET has the potential to detect a possible contribution from dark matter annihilation/decay to the shape of the sobrectrum.

) Indirect Dark Matter Search with Gamma rays

CALET has a better energy resolution than FERMI above 10 GeV. Therefore it can provide a HIGH RESOLUTION measurement of the lineshape of possible signals that FERMI might discover.

better than FERMI above 10 GeV

Example:

- 690 GeV neutralino annihilating to $\gamma\gamma$
- Clumpy halo as realized in N-body simulation of Moore et al. (ApJL 1999)
- Simulated Signal in CALET for 3 years

$$m_{\chi} = 690 \text{GeV}$$

$$N_{\gamma}\sigma v = 1.5 imes 10^{-28}
m cm^3 s^{-1}$$

Gamma-ray Line shape

3 Measurements of cosmic nuclei spectra - I

AMS-02 proton and He rigidity spectra

Recent measurements by AMS-02 with p, He (and Li) below MDR seem to confirm the presence of a spectral break in the 200-300 GeV region as reported by PAMELA and CREAM

CALET will be able to perform an accurate scan of the energy region around the spectral break with an energy resolution ~30 % and large GF ~ 0.12 m² sr. It will measure the curvature of the spectrum and the position of the spectral break-point for individual elements extending the present measurements to the multi-TeV region.

Measurements of cosmic nuclei spectra – II : the sub-PeV region

The KNEE puzzle in the inclusive COSMIC-RAY SPECTRUM:

RECENT INDIRECT MEASUREMENTS BY AIRSHOWERS may suggest a proton cutoff below 1 PeV?

ARGO YBJ (+ LHAASO-CT): high altitude, ultra segmented RPC + Cherenkov telescope (Xmax) LESS SENSITIVE TO INTERACTION MODELS ?

In 5 yrs CALET can perform **DIRECT** measurements of p and He fluxes in the multi-TeV region.

Proton and He with CALET

CALET Energy reach in 5 years:

- Proton spectrum to ~ 900 TeV
- ➢ He spectrum to ≈ 400 TeV/n

Multi-TeV region

- Are Proton and He slopes different?
- Single power-law or curvature??
- Is there a proton cutoff below 1 PeV?

Requirements for calorimetry:

• proton interaction requires > 0.5 λ_{INT}

• energy measurement at 100 TeV scale requires containment of the e.m. core of the hadronic shower i.e.: > 20 X_0

	λ_{INT}	X ₀ (normal incidence)
CREAM	0.5 + 0.7	20
CALET	1.3	30
AMS-02	0.5	17

Intermediate nuclei \rightarrow Fe with CALET in 5 yrs

Fe spectrum to ≈ 10 TeV/n \triangleright

SIF - Roma, September 25, 2015

(5 years)

SIF - Roma, September 25, 2015

- Acoustic test, Thermal-Vacuum test and EMC test were successfully carried out at Tsukuba Space Center (JAXA)
- After final system function test, the payload was transferred to the launching site (Tanegashima Space Center) in preparation for a launch with HTV-5.

13 m diameter thermal vacuum chamber

CALET is now on the ISS !

4 August 25th:

CALET is emplaced on port #9 of the JEM-EF and data communication with the payload is established.

 August 19th: After a successful launch of the Japanese H2-B rocket by the Japan Aerospace Exploration Agency (JAXA) at 20:50:49 (local time), CALET started its journey from Tanegashima Space Center to the ISS.

The HTV-5 Transfer Vehicle (HTV-5) is grabbed by the ISS robotic arm.

3 August 24th:

The HTV-5 docks to the ISS at 6:28 (EDT).