

Advanced Virgo: the magnetic coupling to the payloads and its impact on the low frequency sensitivity of the detector

M. Neri, A. Chincarini, S. Farinon, I. Fiori, G. Gemme, E. Majorana, P. Puppo, P. Rapagnani, B. Swinkels

101° Congresso Nazionale SIF, 21/09/2015

Advanced Virgo: a gravitational interferometer

Sensitivity curve

Advanced Virgo payloads

Beam Splitter

Magnetic actuators for the fine positioning of the mirrors!

Payloads & magnetic coupling

Problem → does the magnetic actuation impact on the Virgo Noise Budget?

Magnetic actuation system in a metallic frame : interaction with stray magnetic fields yielding potential gradient noise in the region of interest

$$\vec{F} = \nabla(\vec{m} \cdot \vec{B})$$

- different magnetic field gradients;
- error in the positioning of the magnets;
- uncertainties on the magnetic moment value.

$$h = \frac{\sum \vec{F}}{MLo(2\pi f)^2}$$

Magnetic characterization of the whole Payload: estimate and minimization of the magnetic noise.

Procedure

What is the magnetic response of the Pay? How a metallic and composite object behaves in a B(t)?

- Geometrical complexity
- Impractical to measure the complet magnetic field map
- Impractical to measure the magnetic gradient
- Complex geometry: simplification

- Task: estimate of the magnetic gradient

Validation

Finite Element Model

Tool: Comsol Multiphysics®

Electro-Magnetic field simulations frequency domain

CAD intrerface

Model validation

Reference measurements

Big Coil @ 33 Hz Big Coil @ 333 Hz Small Coil @ 33 Hz Small Coil @ 333 Hz

Model validation

Preliminary simulations:

Model validation: DoE

- Physical connection does not guarantee "eddy current" connection

- Model: connection volumes (Al or air)

- Optimal configuration: Design of Experiment with hadamard matrix

h noise projection

- Validated model: study of the Pay magnetic response
- > Estimate of the magnetic gradient in the volume of the magnets
- MonteCarlo simulation: magnetic moment tolerance & positioning errors
- > Estimate of the h contribute

Conclusions

- Low frequency magnetic noise has to be estimated
- Low frequency magnetic noise due to the magnetic coupling with the Payloads
- Payloads are complex and composite objects: we need FES
- Development of a procedure to simulate the Payloads:
 - Measurements
 - Model creation
 - Parameters: electrical connections
 - DoE for optimal configuration
 - Model validation
- Study of the magnetic response of the Payload
- Estimate of the magnetic gradient in the magnet volume
- > Estimate of the h contribution