The HPS experiment

Luca Colaneri

University of Roma Tor Vergata and INFN Roma Tor Vergata

La Sapienza, 24 Set. 2015
Motivations for searching Heavy Photons
Description of HPS setup
2015 Engineering Run
Conclusions
Dark Matter and Dark Sector

- DM suggest a dark sector
- Standard Model should be ”blind” to new Dark Forces
- How to look for them?
The heavy photon A'

Consider a theory in which nature contains an additional Abelian gauge symmetry, $U(1)_D$ [Holdom, Phys. Lett. B166, 1986]

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{4} F'_{\mu\nu} F'_{\mu\nu} + m_{A'}^2 A'_{\mu} A'_{\mu} + \frac{\epsilon}{2} F^Y_{\mu\nu} F'_{\mu\nu} \quad (1)$$

This gives rise to a kinetic mixing term which produces an effective parity-conserving interaction $\epsilon e A'_{\mu} J^\mu_{EM}$ of the A' to the electromagnetic current, suppressed relative to the electron charge e by the parameter ϵ, which can naturally be in the range $10^{-12} - 10^{-2}$
Search for A' - Current situation

Fixed Target

$e^- \rightarrow A' \rightarrow l^+ l^-$

$Z \rightarrow \sigma \sim \frac{\alpha^3 Z^2 e^2}{m^2} \sim O(10 \text{ pb})$

$O(\alpha_b^{-1}) \text{ per day}$

- Flavor Factories
- Rare Meson Decays
- Fixed target experiments
- Precision Measurements
- Beam dump experiments

The HPS experiment
University of Roma Tor Vergata and INFN Roma Tor Vergata
A’ search: Bump-Hunt and Vertexing

A’ takes most of the incident energy, produced very forward

Large coupling regime:
A’ decays in target \(\therefore\) constrain \(e^+e^-\) to originate from beamspot
Search for peak in invariant mass plot

Small coupling regime:
A’ decays outside of target \(\therefore\) constrain A’ to originate from beamspot
Search for displaced vertex + mass peak

Including recoil e- along with \(e^+e^-\) pair would improve mass resolution
The Heavy Photon Search (HPS) experiment

- 1 to 6 GeV, 200 nA e^- on 1% R.L. W target
- 6 layer Silicon Vertex Tracker (SVT)
- Electromagnetic Calorimeter (ECal)

Heavy Photon Search Beamline and Detectors
HPS Construction

- Conceived, built and installed HPS detector in about 14 months
- The HPS test detector [NIM A, Volume 777, 21 March 2015, Pages 91-101]
- Upgrade $PbWO_4$ Ecal installed September 2014
- Improved six-layer Si Vertex Tracker installed February 23, 2015
2015 Engineering Run

- 2015 Engineering Run
- in HallB at Jefferson Lab
- 1.1 GeV, 200 nA beam
- Commissioned HallB beamline, SVT, ECAL, trigger, DAQ
- took data with SVT at ± 1.5 mm and ± 0.5 mm from beam
Beam Quality

HPS requires high-quality, stable beam.
Small beam size:

- $\sigma_x \approx 300$ to $500 \, \mu m$
- $\sigma_y \approx 15$ to $50 \, \mu m$

The HPS experiment University of Roma Tor Vergata and INFN Roma Tor Vergata
Took over 5 billion events with single electron and pairs triggers

Detector and data acquisition system performed as expected

Currently analyzing a 10% of the data to calibrate the detector response
 - Time
 - Energy
 - Position
e^+e^- Pairs Mass Distribution

Tiny fraction of all data. Very preliminary look!
Expected HPS Reach

The HPS experiment University of Roma Tor Vergata and INFN Roma Tor Vergata
Conclusions

- HPS is a new experiment at JLAB, dedicated to searching for heavy photons with masses 10-200 MeV and couplings $10^{-3} < \epsilon < 10^{-5}$ in unexplored regions of parameter space.
- Invariant mass and vertexing signatures let HPS achieve sensitivity to very small values of the A' coupling. Using invariant mass alone, HPS covers $\epsilon^2 > \text{few} \times 10^7$ for $10 < m_{A'} < 200$ MeV.
- HPS is installed in Hall B at JLAB and recently completed a successful engineering run, exercising all aspects of the experiment.