The OptoTracker project

Andrea Celentano

INFN-Genova

September 24, 2015

Project goal

Investigate a new approach to charged particle tracking: use the optical signal from a scintillating material, exploiting the light as information carrier.

Proposed technology:

- Collect the scintillation light emitted by organic or inorganic scintillators along the primary particle path with pixelized photo-detectors.
- Measure the hit charge and time for each pixel.
- Perform 3D-tracking by using a sophisticated reconstruction algorithm implementing the time-reversal imaging.

Main deliverable: design, construct, and test a working small-scale demonstrator.

Critical aspects of this approach:

1 Position resolution is limited by the diffusion of charge carriers:

$$
\sigma_x^2 \ge \frac{2kT}{e} \frac{L_d}{E} \rightarrow \text{ALICE TPC}^1: \sigma_x \simeq 1 \, mm \, @ \, L_d = 2.5 \, m
$$

2 Slow signal formation time limits the maximum operation rate to $O(1\textrm{-}10 \textrm{ kHz})$

¹ arXiv:1001.1950

- Light is the fastest information carrier within a material: an OptoTracker is intrinsically capable of sustaining a very high rate.
- The diffusion length of the carriers (photons) in a scintillator is $O(m)$: it does not affect the position resolution in a detector with comparable dimensions.

This technology would permit to construct large-scale active-targets with enhanced particle ID and background rejection capabilities.

- Fast, high light yield, highly transparent scintillators.
-
- Fast, low-noise, multi-channel

- Light is the fastest information carrier within a material: an OptoTracker is intrinsically capable of sustaining a very high rate.
- The diffusion length of the carriers (photons) in a scintillator is $O(m)$: it does not affect the position resolution in a detector with comparable dimensions.

This technology would permit to construct large-scale active-targets with enhanced particle ID and background rejection capabilities.

- Fast, high light yield, highly transparent scintillators.
- Highly pixelized, fast photo-detectors, sensitive to single photoelecrons: MA-PMTs, SiPMs, LA-PPDs.
- Fast, low-noise, multi-channel

- Light is the fastest information carrier within a material: an OptoTracker is intrinsically capable of sustaining a very high rate.
- The diffusion length of the carriers (photons) in a scintillator is $O(m)$: it does not affect the position resolution in a detector with comparable dimensions.

This technology would permit to construct large-scale active-targets with enhanced particle ID and background rejection capabilities.

- Fast, high light yield, highly transparent scintillators.
- Highly pixelized, fast photo-detectors, sensitive to single photoelecrons: MA-PMTs, SiPMs, LA-PPDs.
- Fast, low-noise, multi-channel readout-system: TOFPET, MAROC3, PSEC4.

- Light is the fastest information carrier within a material: an OptoTracker is intrinsically capable of sustaining a very high rate.
- The diffusion length of the carriers (photons) in a scintillator is $O(m)$: it does not affect the position resolution in a detector with comparable dimensions.

This technology would permit to construct large-scale active-targets with enhanced particle ID and background rejection capabilities.

-
- **•** Highly pixelized, f_{∞}^{∞} **photo-detectors**, sensitive to sing **photo**elecrons: $MA-PMTs$, $S\sqrt{N}$ ₃ $\sqrt{2}$ A-PPDs. scintiliators.
Highly pixelized, fa**xo⁹ 803-**detectors,
sensitive to sing the **volume**
MA-PMTs, Suevi 8024-PPDs.
Fast, low 80 sext. TOFPET, MAROC3,
pserca 380⁸: TOFPET, MAROC3,
- \blacksquare Fast, low \mathcal{B}_{SQ} multi-channel

Approach: investigate the solutions developed in other fields, sharing similar issues, and adapt them to the specific problem.

Optical Tomography

Starting point: methods used in **Optical Tomography**, based on the **Expectation-Maximization** approach. Specificity of this problem: the use of the **time information** in the reconstruction algorithm.

Reconstruction approach: discretize the system, in terms of voxels.

- **Direct problem:** use MonteCarlo simulations to characterize the system matrix H_{ij} . "Switch on" one voxel x_i at time and evaluate the corresponding pixels response *g^j* .
- **Inverse problem:** reconstruct the "image" *xⁱ* from pixels response using the Moore-Penrose pseudoinverse matrix.

First results look promising:

Setup:

- Plastic scintillator cube, $L=6$ cm, $5\times5\times5$ voxels
- 4 detectors on side faces, 2.4×4.8 cm², 8x16 pixels

Results for a central vertical trace:

- **•** Data: pixels response for a single event
-

- **Direct problem:** use MonteCarlo simulations to characterize the system matrix H_{ij} . "Switch on" one voxel x_i at time and evaluate the corresponding pixels response *g^j* .
- **Inverse problem:** reconstruct the "image" *xⁱ* from pixels response using the Moore-Penrose pseudoinverse matrix.

First results look promising:

Setup:

- Plastic scintillator cube, L=6 cm, 5x5x5 voxels
- 4 detectors on side faces, 2.4×4.8 cm², 8x16 pixels

Results for a central vertical trace:

- Data: pixels response for a single event
- Reconstruction: voxels excitation

Second reconstruction step: use an analytic reconstruction algorithm, where the event topology is imposed a-priori (track-like or point-like), using results from the numerical approach.

- Use an analytic model to describe the light emission and propagation in the scintillator.
- Construct the Likelihood function for the pixel p_i to measure N_i photo-electrons at times² t_i : $\mathcal{L}_i(N_i,t_i;\vec{x})$
- Maximize the overall Likelihood function to determine the trajectory: $\mathcal{L} = \prod_i \mathcal{L}_i$

The likelihood approach permits to exploit both the **hit charge** and the **hit time** information in the reconstruction algorithm.

for a point-like event

Reconstruction algorithms: analytic approach. First results

Reconstruction algorithm has been tested on MonteCarlo data, to validate it (only hit-charge information included in the Likelihood so far). First results look promising.

Detector configuration: $6 \times 6 \times 6$ cm³ plastic scintillator cube, 4 detectors on the lateral faces

Point-like event: α particle in (0.5,2.1,-1.6) cm

Reconstruction algorithms: analytic approach. First results

Reconstruction algorithm has been tested on MonteCarlo data, to validate it (only hit-charge information included in the Likelihood so far). First results look promising.

Detector configuration: $6 \times 6 \times 6$ cm³ plastic scintillator cube, 4 detectors on the lateral faces

Track event: μ entering in (3,0.51,0.02) cm with $\theta = 12.6^{\circ}$, $\phi = 26.6^{\circ}$

First prototype

A first prototype, optimized for **charge measurements only**, has been designed and constructed. The response to radioactive sources has been measured.

Goals

- Validate MC (charge part)
- Study the reconstruction direct problem

Setup

- EJ-230 scintillator cube, $6\times6\times6$ cm³
- 2x H8500 MA-PMTs coupled to orthogonal faces
- Anti-reflection black coating
- MAROC3-based readout system, optimized for internal trigger only: OR of all channels, threshold \simeq 1 phe

The prototype response to a point-like α radioactive source $(^{241}Am, E = 5.49$ MeV) placed on the top face in different positions has been measured.

- 1 For each channel, the **charge** spectrum with and without the source has been measured
-

$$
\langle N(Q_i) \rangle = \langle E \rangle \cdot LY \cdot G_i \cdot \varepsilon_i \cdot k_i
$$

The prototype response to a point-like α radioactive source $(^{241}Am, E = 5.49$ MeV) placed on the top face in different positions has been measured.

2 To obtain the "true" source spectrum: pedestal subtraction + background subtraction

placed on the top face in different positions has been measured.

- 1 For each channel, the **charge** spectrum with and without the source has been measured
- 2 To obtain the "true" source spectrum: pedestal subtraction + background subtraction

The H8500 single phe response function is too broad to perform a charge-based event-by-event reconstruction. Instead: perform a whole-spectrum analysis.

$$
\langle N(Q_i) \rangle = \langle E \rangle \cdot LY \cdot G_i \cdot \varepsilon_i \cdot k_i
$$

Normalize to the sum of the pixel averages:

 \sum $< N(Q_i) >$ $\frac{1}{i}$ $\langle N(Q_i) \rangle = \frac{G_i \varepsilon_i k_i}{\sum_i G_i \varepsilon_i}$ $\frac{d}{d}G_i\varepsilon_i k_i \Rightarrow$ This can be compared with MC results for k_i

α source at the center of the TOP face

α source in the opposite corner with respect to PMTs

The obtained results will be used to design and construct a new prototype version, optimized for both photon count and hit-time measurements

- **•** Photo-detector: MPPC array, S12642-008PB-50 or S13361-3050AE-08 (low-cross talk version)
- Readout: TOFPET3ASIC-based

The prototype response to radioactive sources, cosmic rays, and possibly *e*[−] beams (Frascati BTF) will be measured.

^{3&}lt;br>JINST 8 C02050, 2013

Backup slides

Participants:

- A. Celentano (PI) INFN Genova
- P. Boccacci Unige DIBRIS
- D. Comoretto, M. Castellano Unige DCCI

External collaboration:

• P. Musico, M. Turisini (FEE and DAQ)

Project details:

- INFN-Gruppo V project, call for young researchers
- Time frame: 2 years (Jan 2015 Dec 2016)
- Budget: \simeq 75+75 k \in

Point-like case

Isotropic emission of photons in the full solid angle (Poisson statistics) ⊗ Photons detection probability (Binomial statistics):

 $\log(\mathcal{L}_i) \propto N_i \log(\mu_i) - \mu_i$

 $\mu_i = N_{tot} \cdot k_i(\vec{x}_P - \vec{x}_i) \cdot \varepsilon_i$

- $k_i = \delta \Omega (\vec{x}_1 \vec{x}_i)/4\pi$: fraction of solid angle seen from the point \vec{x}_1 by the pixel at \vec{x}_p 4
- *εi* : pixel quantum efficiency

Trajectory case

Derived from the previous case, assuming uniform energy deposition along the trajectory:

$$
\mu_i = \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \,\mu_i(\vec{x}, N_{tot}/L)
$$

Comparison between the analytic model and the MC prediction (point-like case):

I derived the formula for the general case of a rectangular surface arbitrary oriented.

Point-like case

Isotropic emission of photons in the full solid angle (Poisson statistics) ⊗ Photons detection probability (Binomial statistics):

 $\log(\mathcal{L}_i) \propto N_i \log(\mu_i) - \mu_i$

 $\mu_i = N_{tot} \cdot k_i(\vec{x}_P - \vec{x}_i) \cdot \varepsilon_i$

- $k_i = \delta \Omega (\vec{x}_1 \vec{x}_i)/4\pi$: fraction of solid angle seen from the point \vec{x}_1 by the pixel at \vec{x}_p 4
- *εi* : pixel quantum efficiency

Trajectory case

Derived from the previous case, assuming uniform energy deposition along the trajectory:

$$
\mu_i = \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \,\mu_i(\vec{x}, N_{tot}/L)
$$

Comparison between the analytic model and the MC prediction (trajectory case):

4 I derived the formula for the general case of a rectangular surface arbitrary oriented.

Involved functions:

- $p_s(t)$: Intrinsic scintillator photon-emission time PDF (exponential)
- $p_d(t)$: Detector intrinsic time-response function (gaussian)

Point-like case: spherical light source at \vec{x}_0

$$
p_i(t) = p_s(t - t_0 - t_i) \otimes p_d(t - t_0 - t_i) \quad \Rightarrow \quad t_i = \frac{c}{n} |\vec{x}_i - \vec{x}_0|
$$

Trajectory case: linear superposition of spherical light source between \vec{x}_0 and \vec{x}_1

$$
p_i(t) \propto \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \, n_i(t - t_0 - t_{\vec{x}}^i) \, k_i(\vec{x}_p - \vec{x}_i) \quad \Rightarrow \quad t_{\vec{x}}^i = \frac{1}{\beta c} |\vec{x} - \vec{x_0}| + \frac{n}{c} |\vec{x}_i - \vec{x}|
$$

- "Top" detectors: first photon comes
-
-

Involved functions:

- $p_s(t)$: Intrinsic scintillator photon-emission time PDF (exponential)
- $p_d(t)$: Detector intrinsic time-response function (gaussian)

Point-like case: spherical light source at \vec{x}_0

$$
p_i(t) = p_s(t - t_0 - t_i) \otimes p_d(t - t_0 - t_i) \quad \Rightarrow \quad t_i = \frac{c}{n} |\vec{x}_i - \vec{x}_0|
$$

Trajectory case: linear superposition of spherical light source between \vec{x}_0 and \vec{x}_1

$$
p_i(t) \propto \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \, n_i(t - t_0 - t_{\vec{x}}^i) \, k_i(\vec{x}_p - \vec{x}_i) \quad \Rightarrow \quad t_{\vec{x}}^i = \frac{1}{\beta c} |\vec{x} - \vec{x_0}| + \frac{n}{c} |\vec{x}_i - \vec{x}|
$$

- "Top" detectors: first photon comes from \vec{x}_1
-
- "Middle" detectors: first photon

Involved functions:

- $p_s(t)$: Intrinsic scintillator photon-emission time PDF (exponential)
- $p_d(t)$: Detector intrinsic time-response function (gaussian)

Point-like case: spherical light source at \vec{x}_0

$$
p_i(t) = p_s(t - t_0 - t_i) \otimes p_d(t - t_0 - t_i) \quad \Rightarrow \quad t_i = \frac{c}{n} |\vec{x}_i - \vec{x}_0|
$$

Trajectory case: linear superposition of spherical light source between \vec{x}_0 and \vec{x}_1

$$
p_i(t) \propto \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \, n_i(t - t_0 - t_{\vec{x}}^i) \, k_i(\vec{x}_p - \vec{x}_i) \quad \Rightarrow \quad t_{\vec{x}}^i = \frac{1}{\beta c} |\vec{x} - \vec{x_0}| + \frac{n}{c} |\vec{x}_i - \vec{x}|
$$

- "Top" detectors: first photon comes from \vec{x}_1
- "Bottom" detectors: first photon comes from \vec{x}_2
- "Middle" detectors: first photon

Involved functions:

- $p_s(t)$: Intrinsic scintillator photon-emission time PDF (exponential)
- $p_d(t)$: Detector intrinsic time-response function (gaussian)

Point-like case: spherical light source at \vec{x}_0

$$
p_i(t) = p_s(t - t_0 - t_i) \otimes p_d(t - t_0 - t_i) \quad \Rightarrow \quad t_i = \frac{c}{n} |\vec{x}_i - \vec{x}_0|
$$

Trajectory case: linear superposition of spherical light source between \vec{x}_0 and \vec{x}_1

$$
p_i(t) \propto \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} \, n_i(t - t_0 - t_{\vec{x}}^i) \, k_i(\vec{x}_p - \vec{x}_i) \quad \Rightarrow \quad t_{\vec{x}}^i = \frac{1}{\beta c} |\vec{x} - \vec{x_0}| + \frac{n}{c} |\vec{x}_i - \vec{x}|
$$

- "Top" detectors: first photon comes from \vec{x}_1
- "Bottom" detectors: first photon comes from \vec{x}_2
- "Middle" detectors: first photon comes from the *C*˘erenkov cone

MAROC3 readout system

MAROC3: 64-channel ASIC for MA-PMT readout

Features:

- Preamplifier, configurable (8 bit, 0 *. . .* 4)
- **•** Fast line: 25 ns shaper $+$ discriminator
- Slow line: 100 ns shaper $+$ mem. cell
- Internal ADC (12 bit)

Outputs:

- 64x digital trigger signal
- Multiplexed analog charge
- **Internal ADC digitized charge**

Readout system:

- **Original system developed for Medical** Imaging with radionuclides
- 4096 channels, USB2.0 readout
- **•** Internal trigger only (OR of all channels)
- No hit-time measurement

Components R&D

The last part of the project (\simeq last 6 months) will be devoted to a specific R&D program on the detector components.

10

Develop a custom scintillator with optimized properties

- Dope organic scintillators with a quencher, such as benzophenone ($Ph₂CO$), to lower the scintillation decay time⁵.
- Develop wave-length shifting optical interfaces with organic molecules (for example, PVK).

Use LA-PPD as photo-detectors

State-of-the art photo-detectors, MCP-based, with micron-sized glass capillary arrays and ALD coating for functionalization. Performances:

- High gain: $G > 10^7$
- Extreme time resolution (σ_t $<$ 20 ps single-phe)
- Very fine pixelization $(20 \ \mu m)$

The project is currently in *R*&*D* phase: first samples (36 cm 2) available for tests in 2015.

