The T2K experiment Latest results

<u>Ciro Riccio</u> Università di Napoli "Federico II" and INFN Napoli

on behalf of the T2K INFN Group

(F.C.T. Barbato, V. Berardi, M.G. Catanesi, C. Checchia, G. Collazuol, G. De Rosa, R. A. Intonti, M. Laveder, A. Longhin, L. Ludovici, L. Magaletti, M. Mezzetto, V. Palladino, E. Radicioni, C. Riccio)

101° SIF Meeting

Rome, September 24th 2015

Beam production

Off-axis (OA) neutrino beam

- $\checkmark\,$ High intensity narrow band beam
- ✓ Increase statistics @ osc. max. (0.6GeV)
- ✓ Decrease background from High Energy tail
- ✓ Dominated by CCQE
- ✓ Low v_e background (three body decay disfavoured)

Near Detector Complex: INGRID & ND280

✓ INGRID (Interactive Neutrino GRID) is centered on the neutrino beam axis. Its purpose is to monitor the neutrino beam direction and stability.

Main goals of **ND280**, located off axis (2.5°) and at 280 m from the target, are:

- \checkmark Provide constraints for long-baseline oscillation analysis
- \checkmark Reduce the systematic uncertainties
- \checkmark Measurement of intrinsic wrong sign and flavour contaminations in the beam
- ✓ Cross section measurement below 1 GeV

A Large Dipole Magnet (UA1): 0.2T magnetic field to allow measurement of momenta and charges

Side Muon Range Detectors (SMRD): plastic scintillators instrumenting magnet iron slices

SuperKamiokande (SK)

- ✓ SK is a water Cherenkov detector built 1 km deep in a cave of Mt. Ikenoyama operational since 1996 and at 295 km from the beam source at Tokai.
- ✓ Cylindrical tank filled with 50 kton (Fiducial mass for T2K analysis is 22.5kton) of ultra pure water divided in:
 - Inner Detector(ID) watched by 11,129photomultiplier tubes (PMTs)

The outer detector (OD), around its inner walls there are 1,885 PMTs

 \overline{v}_{e} event candidate

Physics goals

Results achieved in neutrino mode (6.6x10²⁰ POT)

✓ Discovery of $\nu_{\mu} \rightarrow \nu_{e}$ and precise θ_{13} measurement ✓ Precise measurement of $\nu_{\mu} \rightarrow \nu_{\mu}$ and thus of θ_{23} , Δm^{2}_{23} ✓ Neutrino X-sections below 1GeV @ND280

 $\checkmark v_e$ disappearance in a sterile neutrino ($v_e \rightarrow v_s$)

Future goals (50% $\bar{\nu}$ – 50% ν of 7.8x10²¹ POT)

- ✓ Discovery of \overline{v}_{μ} disappearance and \overline{v}_{e} appearance up to 3 σ
- ✓ Preliminary measurement of leptonic δ_{CP} violation up to 2.5 σ
- ✓ Antineutrino X-sections below 1GeV @ND280
- ✓ Sterile neutrino searches

Preliminary result from first 4x10²⁰ POT anti-nu sample here

Why anti-neutrino?

 ℓ θ_{13} is big enough to allow the mesurement of the leptonic CP phase δ_{CP} detecting difference in the oscillation probability for v and \bar{v}

*Contour are plotter for the case true $\delta_{CP} = -90^{\circ}$, sen²2 $\theta_{13} = 0.1$ and NH. Solid contour: statistical error only. Dashed contour: stat+syst.

Data taking summary

Analysis Strategy

ND Event Samples

Select CC $\bar{\nu}_{\mu}$ candidates based on interactions with $\mu^{\scriptscriptstyle +}$

- \checkmark highest momentum track, positive charge, and PID consistent with muon
- ✓ Two sub-samples based on track multiplicity: CC-1Track, CC>1 Track
- \checkmark Complementary selection of neutrino candidates in antineutrino mode

\overline{v}_{μ} disappearance

- ✓ \overline{v}_{μ} disappearance is examined using 4.0x10²⁰ POT anti-neutrino run. 34 events are found where 104 events are expected for no oscillations.
- ✓ The best-fit oscillation parameters are calculated to be for normal hierarchy.
- ✓ Oscillation parameters for anti-neutrinos well agree with the parameters for neutrinos within statistical errors.

Normal Hierarchy

	$\delta_{CP}=-\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$
Sig $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	1.961	2.636	3.288
Bkg $\nu_{\mu} \rightarrow \nu_{e}$	0.592	0.505	0.389
Bkg NC	0.349	0.349	0.349
Bkg other	0.826	0.826	0.826
Total	3.729	4.315	4.851

Inverted Hierarchy

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	
Sig $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$	2.481	3.254	3.939	
Bkg $\nu_{\mu} \rightarrow \nu_{e}$	0.531	0.423	0.341	
Bkg NC	0.349	0.349	0.349	
Bkg other	0.821	0.821	0.821	
Total	4.181	4.848	5.450	

T2K Cross Sections

Cross section measurements	Target	Reported in	Detector	5.57
$\overline{\nu}_{\mu}$ CC inclusive	СН	Publication in progress	ND280, Tracker	C P C C C C C C C C C C C C C C C C C C
ν_{μ} CC inclusive	СН	PRD 87, 092003 (2013)	ND280, Tracker	MCCOULT HIS
ν_{μ} CCQE	СН	Accepted by PRD	ND280, Tracker	
ν_{e} CC inclusive	СН	PRL 113, 241803 (2014)	ND280, Tracker	
$ν_{\mu}$ NC $π^0$	CH/Water	Publication in progress	ND280, P0D	
ν_{μ} NC elastic	Water	PRD 90, 072012 (2014)	SK	
ν_{μ} CC inclusive	CH/Fe	PRD 90, 052010 (2014)	INGRID	
v_{μ} CCQE	СН	PRD 91, 112002 (2015)	INGRID	
ν_{μ} CC coherent	СН	Publication in progress	INGRID	
ν_{μ} CC coherent	СН	Publication in progress	ND280, Tracker	
$ν_{\mu}$ CCπ ⁺	Water	Publication in progress	ND280, Tracker	
ν _μ CC0π	СН	Publication in progress	ND280, Tracker	

Thank you for your attention!

