Come i raggi cosmici limitano l’affidabilità dei circuiti elettronici a livello terrestre e avionico

Alessandro Paccagnella
Dipartimento di Ingegneria dell’Informazione, Università di Padova, e INFN, sezione di Padova
Introduction
Ionizing radiation effects in semiconductors
Reliability issue: Single Event Effects (SEE’s)
Cosmic rays and atmospheric neutrons
Accelerated testing of electronics with accelerators
Microelectronics technology evolution and SEE’s
Summary
Cosmic rays, electronics reliability and the media

What Are They?
Cosmic rays are not rays of light, but subatomic particles that bombard the Earth from anywhere beyond its atmosphere.

Source: NASA

Where Are They From?
They can come from our own sun as well as from outside our solar system, propelled by the blast waves of exploding stars.

How Do They Get Here?
Most particles are deflected in the atmosphere before hitting the ground, but a few fall to Earth, where their charges can interfere with electronics.

This Harms a Toyota?
Investigators are looking into whether this kind of electronic interference could be a cause of unintended acceleration in Toyota vehicles.

www.cars.com, 2010
Reliability of electronics

- **Societal needs for more reliable electronics**
- Reliability in advanced ICs is improving down to some **10-100 FIT**
- Electronics is present in **Active Security**, especially visible in everyday vehicles (airplanes, cars – **0 FIT goal**), trucks, railways,...
- Ionizing radiation poses a threat on the electronics reliability, even at **sea level, on a variety of applications**
- **Avionic and space industries** have a long standing tradition of radiation testing, but this issue is being seriously investigated by:
 - Semiconductor **companies**: IBM (since’80s), Intel, STMicroelectronics, Texas Instruments, Cypress, Xilinx,..., but few SEE comprehensive data from companies are available
 - Semiconductor IC **customers**: even less prone to show their interest and results, basically no data available
- Radiation effects at sea level are dominated by **Soft Errors (SE)** → **Soft Error Rate (SER)** figure of merit; if not properly mitigated, SER may reach **10^5 FIT** → **high reliability requires extensive testing!**
Charge generation and collection in a pn junction

- Reverse-biased pn junctions are very sensitive to radiation, because they can collect charge, giving rise to a spurious current pulse.
- Three phases: onset, drift/funnel, diffusion.
Charge generation and collection in a pn junction

- Reverse-biased pn junctions are very sensitive to radiation, because they can collect the radiation generated charge, giving rise to a spurious current pulse at a sensitive node.
- Three phases: onset, drift/funnel, diffusion.
Charge generation and collection in a pn junction

Three phases: onset, drift/funnel, diffusion

R. Baumann, IEEE-TDMR, 2005

p-Si

V_{DD}

n+
Charge generation and collection in a pn junction

Three phases: onset, drift/funnel, diffusion

R. Baumann, IEEE-TDNR, 2005
Single Event Upsets in SRAMs

- **V_{DD}** and **GND**

- **'0'**
 - **V_{NQ}**
 - **'1'**
 - **V_Q**

- **poly**

- **n+**
 - **p-Si**
 - **n+**

- **SRAM: benchmark for SEE studies**

- **Initial state:**
 - \(V_Q = V_{DD} \) (logic “1”)
 - \(V_{NQ} = 0 \) (logic “0”)

101° Congresso Nazionale SIF

Alessandro Paccagnella
A particle strikes the drain junction of the off NMOSFET: electrons are collected at the Q node, generating a negative voltage pulse.
If the voltage transient is **long** and **ample** enough (in other terms, if the **collected charge** is larger than the **critical charge**), the cell flips:

- Q: $1 \rightarrow 0$
- NQ: $0 \rightarrow 1$

SOFT ERROR!
Classification of Single Event Effects

- **Non-destructive (Soft Errors, SE):**
 - *Single Event Transient (SET)*
 - Single Event Upset (SEU)
 - Single Bit Upset (SBU)
 - Multiple Bit/Cell Upset (MBU/MCU)
 - Single Event Functional Interruption (SEFI)
 - Single Event Latchup (SEL or SELU)... *may be also destructive*

- **Destructive (hard errors):**
 - Stuck Bits
 - Power, analog:
 - Single Event Burnout (SEB)
 - Single Event Gate Rupture (SEGR)

Image: Destructive event in a COTS 120V DC-DC Converter K. LaBel, EWRHE 2004
Moore’s law is (self-)validated by reducing the transistor dimension over the years, by scaling down the minimum feature size of the CMOS technology node (at present, the smallest feature size is 14 nm, microprocessors by INTEL and SAMSUNG).

Source: INTEL
Simulated e-h track structure in Si

P. Dodd, et al., IEEE-TNS, 1998

Minimum feature size (14 nm) - commercial CMOS
Victor Hess before his 1912 balloon flight in Austria, during which he discovered cosmic rays.
Atmospheric particles flux

Climax Corrected Neutron Monitor Values
Smoothed Sunspot Numbers 1960-2002

- Wide neutron energy spectrum
- JEDEC JESD89A (standard flux): ~ 13 n/cm²-hr @ sea-level, NYC, Eₙ ≥ 10 MeV

101° Congresso Nazionale SIF
Atmospheric neutrons

Inelastic reactions $^{28}\text{Si} + n \rightarrow$

- $^{25}\text{Mg} + \alpha \quad 2.75 \text{ MeV}$
- $^{28}\text{Al} + p \quad 4.00 \text{ MeV}$
- $^{27}\text{Al} + d \quad 9.70 \text{ MeV}$
- $^{24}\text{Mg} + n + \alpha \quad 10.34 \text{ MeV}$
- $^{27}\text{Al} + n + p \quad 12.00 \text{ MeV}$
- $^{26}\text{Mg} + ^3\text{He} \quad 12.58 \text{ MeV}$
- $^{21}\text{Ne} + 2\alpha \quad 12.99 \text{ MeV}$

F. Wrobel et al., IEEE TNS, 2000

Plus reactions between n and O, Al, Cu, W, ...
Testing with wide neutron energy spectrum: only few accelerators around the world may produce neutron beams at high intensity to perform accelerated testing of electronics:

- **VESUVIO (and shortly CHIPIR) at ISIS, Rutherford Appleton Laboratory, Didcot, UK**
- ANITA, The Svedberg Laboratory, Uppsala, Sweden
- CHARM facility, CERN
- *Petersburg Nuclear Physics Institute (PNPI), Gatchina, St Petersburg, Russia*
- Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory, Los Alamos, NM, USA
- TRIUMF, Vancouver, Canada
- **RCNP, Osaka, Japan**
The first SEE testing of electronic components under a wide energy spectrum in Europe performed at the VESUVIO line, ISIS-RAL, Didcot, UK, by an Italian Collaboration (Universities of Milano Bicocca, Padova and Roma2 Tor Vergata) (Andreani, et al, APL, 2008)
The ISIS neutron spectrum:

- $1/E^\alpha$ characteristic ($\alpha > 1$),
- flux similar to the terrestrial: **acceleration factor over 10^7**

At ISIS a new line (CHIPIR), dedicated to neutron testing of electronics, is under commissioning, with a **higher intensity neutron flux**
SRAM scaling trends (1)

R. Baumann, RADECS Short Course, 2001
Per bit, SEU is slightly going down with each generation (since 180 or 130nm)...
...but system bit count is strongly increasing!

Atmospheric Muon induced SEEs may increase the bit SEU (significantly?) once $Q_{\text{crit}} < 0.1 \text{ fC}$: first tests performed at ISIS (Vanderbilt Univ, Padova Univ)

Courtesy: Robert Baumann, Texas Instruments, 2013
Multiple Bit Upsets due to neutrons

New Single Event Effects are observed on state-of-the-art IC’s exposed to neutrons, due to the shrinking MOS size:

- Multi-cell hits
- Charge sharing
- Grazing angle effects
- SEU bursts
- MBUs rising, more difficult to correct by onboard ECC

N. Seifert, et al., IRPS 2008
In NAND Flash Memories, the neutron bit cross section σ exponentially increases as the cell feature size is reduced (Multi Level Cell: MLC)

- 34-nm SLC is one of the first generations of single-bit NAND cells (Single Level Cell: SLC) sensitive to neutrons.
Single event effects are produced by collecting the charge generated in the semiconductor by a single ionizing particle: charge > critical charge (CC)

Different SEE’s may occur depending on the device type, being either soft or hard in nature

SEE’s take place not only in radiation harsh environments but also at sea and avionic levels

The SEE per bit sensitivity of current CMOS technologies is stable/decreasing, but the overall system SER is increasing

Diverse SEE features appear in scaled CMOS IC’s, needing suitable countermeasures to mitigate SEE’s and reduce SER

New concerns may arise from terrestrial muons when CC<0.1 fC

Keeping high reliability levels in IC’s requires extensive neutron (and muon) testing by using accelerators!