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the nucleon is still a very mysterious object …..  
and the most abundant piece of matter in the Universe

TMDs = 
exploring the 
3D nucleon 

structure, in 
momentum 

space 

Transverse 
Momentum 
Dependent 
partonic 

distributions
GPDs = 

exploring the 
3D nucleon 

structure, in 
coordinate 

space 

Generalised 
Partonic 

Distributions
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simple physical ideas...
 TMDs = Transverse Momentum Dependent 
Parton Distribution Functions (TMD-PDF) or  

Transverse Momentum Dependent 
Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with 
their intrinsic motion and spin, inside a fast moving 

proton, with its spin.

S · (p⇥ k�) sq · (p⇥ k�) S · sq · · ·
“Sivers effect” “Boer-Mulders effect”



there are 8 independent TMD-PDFs

gq
1L(x,k2

�)

fq
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hq
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correlate sL of quark with SL of proton 
unintegrated helicity distribution 

correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 

only these survive in the collinear limit 

f�q
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�) correlate k⊥ of quark with ST of proton (Sivers)

h�q
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�) correlate k⊥ and sT of quark (Boer-Mulders) 
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different double-spin correlations  
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TMD-FFs give the number density of hadrons, with 
their momentum, originated in the fragmentation of a 

fast moving parton, with its spin.

“Collins effect”sq · (pq ⇥ p�)

there are 2 independent TMD-FFs for spinless hadrons

Dq
1(z,p2

?) unpolarized hadrons in unpolarized quarks 
unintegrated fragmentation function 

H?q
1 (z,p2

?) correlate p⊥ of hadron with sT of quark (Collins)



how to “measure” TMDs? 
needs processes which relate physical observables 
to parton intrinsic motion via QCD factorisation 

SIDIS Drell-Yan processes 
`N ! `hX pN ! `+`�X

a similar diagram for e+e� ! h1 h2 X

and, possibly, for pN ! hX



new probes and concepts to explore the 
nucleon structure 

TMDs - Transverse Momentum Dependent 
(distribution and fragmentation functions) 

(polarized) SIDIS and Drell-Yan
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GPDs - Generalized Partonic Distributions 
exclusive processes in leptonic and hadronic 

interactions

P ′, S ′P, S
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spatial partonic distribution in transverse space



GTMDs - Generalised Transverse Momentum 
Dependent (partonic distributions) 

exclusive processes in leptonic and hadronic 
interactions

P ′, S ′P, S

k′k
P 0 � P = �

H(k,�)
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TMDs + GPDs and the the full story ...
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Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],

– 3 –

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (2011) 041



phase-space parton distribution,  W (k, b)
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TMDs in SIDIS 

�q �0
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dxB dQ2 dzh d2P T d⇥S

TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

PT � Q2Two scales:

d�⇥p�⇥hX =
�

q

fq(x,k⇥;Q2)� d�̂⇥q�⇥q(y, k⇥;Q2)�Dh
q (z,p⇥;Q2)

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

TMD-PDFs hard scattering TMD-FFs

P T = p? + zk?
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{
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}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S∥ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT ≃ ΛQCD ≪ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],
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q f q
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TMDs in Drell-Yan processes              
COMPASS, RHIC, Fermilab, NICA, AFTER...              

p p

Q2 = M2

qT

qL
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l–

factorization holds, two scales, M2, and qT << M

d�D�Y =
�

a

fq(x1,k⇤1;Q2)� fq̄(x2,k⇤2;Q2) d�̂qq̄⇥⇤+⇤�

direct product of TMDs,  no fragmentation process



Case of one polarized nucleon only
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Unpolarized cross section already very interesting
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� = 1 µ = ⇤ = 0naive collinear parton model:



Collins function from e+e– processes  
Belle, BaBar, BES-III
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another similar asymmetry can be measured, A0 
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Experimental results:  
clear evidence for Sivers and Collins effects from 

SIDIS data (HERMES, COMPASS, JLab) 



independent evidence for Collins effect 
from e+e- data at Belle, BaBar and BES-III
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Figure 3. – Preliminary BABAR measurement of Collins asymmetries (full circle in red). By
comparison the superseded Belle off-peak results (open circle in blue), and Belle results on the
full data sample (full green circles) are shown. Systematic and statistical errors are added in
quadrature.

)thθ(21+cos
)thθ(2sin0 0.2 0.4 0.6 0.8 1

A
12

-0.01

0

0.01

0.02

0.03

0.04 (a)BABAR Preliminary

)2θ(21+cos
)2θ(2sin0 0.2 0.4 0.6 0.8 1

A
0

-0.01

0

0.01

0.02

0.03

0.04 (b)BABAR Preliminary

Figure 4. – Collins asymmetry A12 (a), and A0 (b), as a function of (sin2 θ)/(1 + cos2 θ), where
θ = θT and θ = θ2 have been used in plot (a) and (b), respectively.

The asymmetries are studied in function of symmetric bins (z1, z2) of the pion fractional
energies and in function of sin2 θ/(1 + cos2 θ), and are compared with the Belle analysis.
The results are in overall good agreement each other. However, the off-peak data sample
is statistically limited, and the update of the measurement with the full BABAR data
sample is ongoing.
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FIG. 2. Double ratio RU/RL versus 2φ0 in the bin z1 ∈
[0.3, 0.5], z2 ∈[0.5, 0.9] (top) and bin z1 ∈ [0.5, 0.9], z2 ∈
[0.5, 0.9] (bottom). The solid lines show the results of the fit.

tio RU/RL(C) follows the expression

RU

RL(C)
= A cos(2φ0) +B, (3)

where A and B are free parameters. B should be consis-
tent with unity, and A mainly contains the Collins effect.
The AUL, AUC are used to denote the asymmetries for
UL and UC ratios, respectively.
The analysis is performed in (z1, z2) bins with bound-

aries at zi= 0.2, 0.3, 0.5 and 0.9 (i = 1, 2), where comple-
mentary off-diagonal bins (z1, z2) and (z2, z1) are com-
bined. In each (z1, z2) bin, normalized rates RU,L,C and
double ratios RU/RL,C are evaluated in 15 bins of con-
stant width in the 2φ0 angles. In Fig. 2, the distributions
of the double ratio RU/RL are shown for two highest (z1,
z2) bins with the fit results using Eq. 3. In Fig. 3, the
asymmetry values (A) obtained from the fit are shown as
a function of six symmetric (z1, z2) bins. Studying the
dependence on pt is valuable for investigating the trans-
verse momentum dependent evolution of the Collins func-
tion. The expected behavior of the Collins asymmetries
as a function of sin2θ2/(1 + cos2θ2) is linear (see Eq. 2).
Therefore, the Collins asymmetries are investigated also
in bins of pt and sin2θ2/(1 + cos2θ2), as shown in Fig. 4
and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties

are investigated. An important test of the analysis
method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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Although the HERMES and COMPASS data cover similar Q2 regions (1  Q2  10 GeV2), they
di↵er in the experimental set-up, in the statistics, in the binning choices and in the explored xB range; in
addition, there seems to be some discrepancy between the two measurements. We then fit the HERMES
and the COMPASS multiplicities separately. A simultaneous fit of both sets of data would lead to poor
results and is not presented here.

Recently, another study of the unpolarised TMDs has appeared [28], which follows a procedure somehow
similar to that of this work, but which considers only the HERMES set of experimental data and does
not include any attempt to check for signs of scale evolution.

After a short Section II devoted to the formalism, we present our main results in Section III. In Section
IV we briefly discuss the possible role, and look for possible signs, of TMD evolution. In Section V we
compare our present results with those of previous analyses [9, 11] and check their consistency with other
measurements of SIDIS cross sections and PT -distributions [10, 12, 13, 29] which were not included in
our fits. Further comments and concluding discussions are presented in Section VI.

II. FORMALISM

The unpolarised ` + p ! `0 hX, SIDIS cross section in the TMD factorisation scheme, at order (k?/Q)
and ↵0

s, in the kinematical region where PT ' k? ⌧ Q , reads [30, 31]:

d�`+p!`0hX

dxB dQ2 dzh dP 2
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=
2⇡2↵2

(xBs)
2

⇥
1 + (1� y)2
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⇥
X

q

e2q

Z
d2k? d2p? �(2)

⇣
P T � zhk? � p?

⌘
fq/p(x, k?)Dh/q(z, p?) (1)

⌘ 2⇡2↵2

(xBs)
2

⇥
1 + (1� y)2

⇤

y2
FUU ·

In the �⇤ � p c.m. frame the measured transverse momentum, P T , of the final hadron is generated by
the transverse momentum of the quark in the target proton, k?, and of the final hadron with respect to
the fragmenting quark, p?. At order k?/Q it is simply given by

P T = z k? + p? . (2)

As usual:

s = (`+ p)2 Q2 = �q2 = �(`� `0)2 xB =
Q2

2p · q y =
Q2

xBs
zh =

p · Ph

p · q (3)

and the variables x, z and p? are related to the final observed variables xB , zh and P T and to the
integration variable k?. The exact relations can be found in Ref. [9]; at O(k?/Q) one simply has

x = xB z = zh . (4)

The unpolarised TMD distribution and fragmentation functions, fq/p(x, k?) and Dh/q(z, p?), depend
on the light-cone momentum fractions x and z and on the magnitudes of the transverse momenta k? =
|k?| and p? = |p?|. We assume these dependences to be factorized and we assume for the k? and p?
dependences a Gaussian form, with one free parameter which fixes the Gaussian width,

fq/p(x, k?) = fq/p(x)
e�k2

?/hk2
?i

⇡hk2?i
(5)

Dh/q(z, p?) = Dh/q(z)
e�p2

?/hp2
?i

⇡hp2?i
· (6)

The integrated PDFs, fq/p(x) and Dh/q(z), can be taken from the available fits of the world data: in
this analysis we will use the CTEQ6L set for the PDFs [32] and the DSS set for the fragmentation
functions [33]. In general, the widths of the Gaussians could depend on x or z and might be di↵erent

strong support for a gaussian distribution  
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for di↵erent distributions: here, we first assume them to be constant and flavour independent and then
perform further tests to check their sensitivity to flavour, x, z and Q2 dependence. The constant Gaussian
parameterisation, supported by a number of experimental evidences [11] as well as by dedicated lattice
simulations [34], has the advantage that the intrinsic transverse momentum dependence of the cross
section can be integrated out analytically. In fact, inserting Eqs. (5) and (6) into Eq. (1), one obtains

FUU =
X

q

e2q fq/p(xB )Dh/q(zh)
e�P 2

T /hP 2
T i

⇡hP 2

T i
(7)

where

hP 2

T i = hp2?i+ z2h hk2?i . (8)

Notice that hk2?i and hp2?i will be taken as the free parameters of our fit.
According to COMPASS [16] notation the di↵erential hadron multiplicity is defined as:

d2nh(xB , Q
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2

T )

dzh dP 2

T
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T )

dxB dQ2 dzh dP 2

T

, (9)

while HERMES [15] definition is

Mh
n (xB , Q

2, zh, PT ) ⌘
1

d2�DIS(xB , Q
2)

dxB dQ2

d4�(xB , Q
2, zh, PT )

dxB dQ2 dzh dPT
· (10)

where the index n denotes the kind of target.
The Deep Inelastic Scattering (DIS) cross section has the usual leading order collinear expression,
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⇥
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X

q

e2q fq/p(xB ) · (11)

Inserting Eq. (1), (7) and (11) into Eq. (9) we have a simple explicit expression for the COMPASS and
HERMES multiplicities:

d2nh(xB , Q
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dzh dP 2

T

=
1
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q e

2
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e�P 2
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T i

⇡hP 2

T i
, (12)

with hP 2

T i given in Eq. (8). Notice that, by integrating the above equation over P T , with its magnitude
ranging from zero to infinity, one recovers the ratio of the usual leading order cross sections in terms
of collinear PDFs and FFs. Its agreement with experimental data has been discussed, for instance, in
Refs. [15] and [28].

III. RESULTS

As mentioned in the introduction, the most recent analyses of HERMES and COMPASS Collaborations
provide (unintegrated) multivariate experimental data, presented in bins of xB = x, Q2, zh = z and PT .
The HERMES multiplicities refer to identified hadron productions (⇡+, ⇡�, K+, K�) o↵ proton and
deuteron targets, and are presented in 6 bins of definite Q2 and xB values, each for several di↵erent values
of zh and PT , for a total of 2 660 data points. The selected events cover the kinematical region of Q2

values between 1 and 10 GeV2 and 0.023  xB  0.6, with a hadronic transverse momentum PT < 2
GeV and a fractional energy zh in the range 0.1  zh  0.9.

Instead, the COMPASS multiplicities refer to unidentified charged hadron production (h+ and h�)
o↵ a deuteron target (6LiD), and are presented in 23 bins of definite Q2 and xB values, each for several
values of zh and PT , for a total of 18 624 data points. The Q2 and zh regions covered by COMPASS
are comparable to those explored by the HERMES experiment, while they span a region of smaller xB

values, 0.0045  xB  0.12, and cover a wider PT region (reaching lower PT values). Moreover, the
binning choices are very di↵erent and COMPASS statistics is much higher than that of HERMES.

For all these reasons, we consider the two data sets separately and perform individual fits.
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a similar analysis performed by Signori, Bacchetta, Radici, Schnell, 
JHEP 1311 (2013) 194; it also assumes gaussian behaviour 

hk2?i = 0.57 hp2?i = 0.12
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FIG. 6: In the left panel we plot (solid red lines) the transversity distribution functions xh

1q(x) = x�T q(x) for q = u, d,

with their uncertainty bands (shaded areas), obtained from our best fit of SIDIS data on A
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, adopting the standard parameterisation (Table II). Similarly, in the right panel we plot the corresponding first
moment of the favoured and disfavoured Collins functions, Eq. (33). All results are given at Q

2 = 2.41 GeV2. The

dashed blue lines show the same quantities as obtained in Ref. [7] using the data then available on A

sin(�h+�S)

UT and A

UL
12

.

transversely polarised quark. In addition, the SIDIS asymmetry can only be observed if coupled to a non negligi-
ble quark transversity distribution. The first original extraction of the transversity distribution and the Collins
fragmentation functions [6, 7], has been confirmed here, with new data and a possible new functional shape of
the Collins functions. The results on the transversity distribution have also been confirmed independently in
Ref. [8].

A further improvement in the QCD analysis of the experimental data, towards a more complete understanding
of the Collins and transversity distributions, and their possible role in other processes, would require taking into
account the TMD-evolution of �T q(x, k?) and �NDh/q"(z, p?). Great progress has been recently achieved in the
study of the TMD-evolution of the unpolarized and Sivers transverse momentum dependent distributions [33–37]
and a similar progress is expected soon for the Collins function and the transversity TMD distribution [38].
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where d�",# is a shorthand notation for

d�",# ⌘ d6�`p",#!`hX

dx dy dz d2P T d�S

and x, y, z are the usual SIDIS variables:
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(P · Ph)

(P · q)
· (2)

We adopt here the same notations and kinematical variables as defined in Refs. [6, 13], to which we refer for
further details, in particular for the definition of the azimuthal angles which appear above and in the following
equations.

By considering the sin(�h + �S) moment of AUT [14], we are able to single out the e↵ect originating from
the spin dependent part of the fragmentation function of a transversely polarised quark, embedded in the
Collins function, �NDh/q"(z, p?) = (2 p?/z mh) H?q

1

(z, p?) [15], coupled to the TMD transversity distribution
�T q(x, k?) [6]:
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The usual integrated transversity distribution is given, according to some common notations, by:

�T q(x) ⌘ h
1q(x) =

Z

d2k? �T q(x, k?) . (5)

This analysis, performed at O(k?/Q), can be further simplified adopting a Gaussian and factorized parame-
terization of the TMDs. In particular for the unpolarized parton distribution (TMD-PDFs) and fragmentation
(TMD-FFs) functions we use:
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with hk2

?i and hp2

?i fixed to the values found in Ref. [16] by analyzing unpolarized SIDIS azimuthal dependent
data:

hk2

?i = 0.25 GeV2 hp2

?i = 0.20 GeV2 . (8)

The integrated parton distribution and fragmentation functions, fq/p(x) and Dh/q(z), are available in the
literature; in particular, we use the GRV98LO PDF set [17] and the DSS fragmentation function set [18].

For the transversity distribution, �T q(x, k?), and the Collins FF, �NDh/q"(z, p?), we adopt the following
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SIDIS and e+e- data, simple parameterization, no TMD 
evolution, agreement with extraction using di-hadron FF 

(recent papers by Bacchetta, Courtoy, Guagnelli, Radici, JHEP 1505 (2015) 123;  
 Kang, Prokudin, Sun, Yuan, Phys. Rev. D91 (2015) 071501; arXiv:1505.05589)



extraction of u and d Sivers functions - first phase
M.A, M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin               

(in agreement with several other groups)
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIGURE 2. Fit of COMPASS deuteron data [3] for pion (left panel) and kaon production (right panel).
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FIGURE 3. In the left panel we compare our predictions on proton target for charged hadrons with the

data released by the COMPASS collaboration [5]. The errors on the data are the statical and systematic

errors added in quadrature. The right panel shows the first moment of the Sivers functions extracted from

the fitting procedure.
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Q2 evolution only taken into account in the collinear part (usual PDF) 



Transverse distortion
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courtesy of Alessandro Bacchetta

transverse momentum distortion 

Sivers effects induces distortions in the 
parton distribution 

(quarks polarised along y-direction)

courtesy of A. Bacchetta
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FIG. 3: Transverse momentum distribution of the Higgs plus jet pair in the process p p → H jetX, as defined in Eq. (29), for
the subprocess gg → Hg, q2Tmax = M2

H/4, and yH = yj. The TMDs are the same as in Fig. 2. The solid line indicates the
distribution in absence of linear polarization. The blue band indicates the range for K⊥ → 0.

By substitution into Eqs. (41)-(43), one finds

R0(q
2
T
) =

1

2

M4
H

9K4
⊥ + 8K2

⊥M2
H +M4

H

c2

8

∫∞

0 dbbJ0(b|qT |) b2

R2
h

K1(b/Rh)2
∫∞

0 dbbJ0(b|qT |)K0(b/R)2
, (53)

R2(q
2
T
) =

K2
⊥(2K

2
⊥ +M2

H)

9K4
⊥ + 8K2

⊥M2
H +M4

H

−c

2

∫∞

0 dbbJ2(b|qT |) b
Rh

K0(b/R)K1(b/Rh)
∫∞

0 dbbJ0(b|qT |)K0(b/R)2
, (54)

R4(q
2
T
) =

1

4

K4
⊥

9K4
⊥ + 8K2

⊥M2
H +M4

H

c2

8

∫∞

0 dbbJ4(b|qT |) b2

R2
h

K1(b/Rh)2
∫∞

0 dbbJ0(b|qT |)K0(b/R)2
. (55)

Results for the upper bound of R0 in Eq. (41) are shown in Fig. 2, where we use the unpolarized TMD distribution
in Eq. (44), while h⊥ g

1 is given by Eq. (45) in the left panel and by Eq. (46) in the right panel. The results are
presented for two different choices of K⊥ ≡ |K⊥|: K⊥ ≡ |K⊥| = 10 and 100 GeV.
The corresponding results for the transverse momentum distribution defined in Eq. (38), with σ0 given in Eq. (32)

and q2
Tmax = M2

H/4, are depicted in Fig. 3. The choice of qTmax is motivated by the requirement of TMD factorization
that qT ≪ Q, where Q denotes the hard scale. In the present case we have two hard scales: MH and K⊥. The kine-
matics considered here is strictly speaking the back-to-back correlation region where |qT | ≪ |K⊥|. By integrating up
to q2

Tmax = M2
H/4, one however also includes configurations |qT |>∼ |K⊥| in which H and the jet are not approximately

back to back in the lab frame. This situation is not included in the calculation of 2 → 2 scattering processes presented
here. However, for the model where the TMD has a power-law tail, the recoil against a third particle emitted into the
final state in 2 → 3 processes, is mimicked to some extent. Differently put, the tail of the TMD is sufficiently hard
to produce large-qT pairs. This is the reason why we extend the integration to q2

Tmax = M2
H/4. For the numerical

results it does not make too much of a difference. In the Gaussian model considered in the next subsection, the tail
of the TMDs is too suppressed to mimick the contribution from 2 → 3 processes, hence, in that case we will restrict
to q2

Tmax = K2
⊥/4 to emphasize the proper region of validity. As a last comment on this point, sometimes the angular

distribution of pair production processes are considered in the rest frame of the pair, for instance the Collins-Soper
frame [25, 40]. In that case the relative magnitude of |qT | w.r.t. |K⊥| is not automatically apparent. In the case of
Higgs plus jet, the center of mass energy of the pair is generally much larger than |qT |, while |qT | can be smaller or
larger than |K⊥|. If one restricts to 2 → 2 scattering processes, one should realize that the region |qT |>∼ |K⊥| is not
properly described, but at best mimicked by including the perturbative tails of the TMDs.
Our estimates for ⟨cos 2φ⟩qT and ⟨cos 4φ⟩qT are presented in Figs. 4 and 5, respectively, with K⊥ = 10 and 100

GeV. As before, for fg
1 we have adopted the Ansatz in Eq. (44), while h⊥ g

1 is given either by Eq. (45), in the left
panels, or by Eq. (46), in the right panels. Moreover, we have chosen again q2

Tmax = M2
H/4.
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FIG. 4: Absolute value of the ⟨cos 2φ⟩qT asymmetries for the process p p → H jetX, defined in Eq. (36), as a function of the
transverse momentum qT of the Higgs plus jet pair, under the same conditions as in Fig. 3. The blue band indicates the range
for K⊥ → ∞.

Although we have plotted its absolute value, we point out that ⟨cos 2φ⟩qT is the only observable, among the ones
discussed here, that is sensitive to the sign of the polarized gluon distribution, and it is expected to be negative if
h⊥ g
1 > 0.
Since the magnitudes of ⟨cos 2φ⟩qT and ⟨cos 4φ⟩qT turn out be very small, it will be easier to measure the integral of

these observables over q2
T
, up to q2

Tmax, as defined in Eq. (37). In both models for h⊥ g
1 , we find that |⟨cos 2φ⟩| ≈ 12%

when K⊥ = 100 GeV, while its value is about 0.5% when K⊥ = 10 GeV. We find that ⟨cos 4φ⟩ is about 0.2% at
K⊥ = 100 GeV and completely negligible at K⊥ = 10 GeV. These numbers are for q2

Tmax = M2
H/4 in both numerator

and denominator.
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FIG. 5: ⟨cos 4φ⟩qT asymmetries for the process p p → H jetX, defined in Eq. (36), as a function of the transverse momentum
qT of the Higgs plus jet pair, under the same conditions as in Fig. 3. The blue band indicates the range for K⊥ → ∞.
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FIG. 4: Absolute value of the ⟨cos 2φ⟩qT asymmetries for the process p p → H jetX, defined in Eq. (36), as a function of the
transverse momentum qT of the Higgs plus jet pair, under the same conditions as in Fig. 3. The blue band indicates the range
for K⊥ → ∞.

Although we have plotted its absolute value, we point out that ⟨cos 2φ⟩qT is the only observable, among the ones
discussed here, that is sensitive to the sign of the polarized gluon distribution, and it is expected to be negative if
h⊥ g
1 > 0.
Since the magnitudes of ⟨cos 2φ⟩qT and ⟨cos 4φ⟩qT turn out be very small, it will be easier to measure the integral of

these observables over q2
T
, up to q2

Tmax, as defined in Eq. (37). In both models for h⊥ g
1 , we find that |⟨cos 2φ⟩| ≈ 12%

when K⊥ = 100 GeV, while its value is about 0.5% when K⊥ = 10 GeV. We find that ⟨cos 4φ⟩ is about 0.2% at
K⊥ = 100 GeV and completely negligible at K⊥ = 10 GeV. These numbers are for q2

Tmax = M2
H/4 in both numerator

and denominator.
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FIG. 5: ⟨cos 4φ⟩qT asymmetries for the process p p → H jetX, defined in Eq. (36), as a function of the transverse momentum
qT of the Higgs plus jet pair, under the same conditions as in Fig. 3. The blue band indicates the range for K⊥ → ∞.
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beyond the scope of this paper. Here we focus on the cross section expressions and on the differences of the Higgs
plus jet process to Higgs production and to some other similar processes, pointing out the advantages it in principle
has to offer.
In this paper we present the relevant expressions for Higgs plus jet production in leading order and study the

impact of the gluon polarization in two models for the gluon distributions involved. Both models have the advantage
that they allow to obtain analytic expressions, but we will mostly present numerical results to show the qualitative
differences between the two cases more clearly. We also present results for angular distributions, which have the
advantage of singling out specific contributions. Although measurements of angular distributions generally require
large statistics, probing a nonzero result may nevertheless be possible when integrating over transverse momenta up
to some maximum value as suggested in Ref. [25].

II. OUTLINE OF THE CALCULATION

We study the process

p(PA)+ p(PB) → H(KH)+ jet(Kj)+X , (1)

where the four-momenta of the particles are given within round brackets, and the Higgs boson and jet in the final state
are produced with momenta that have components in the plane orthogonal to the direction of the initial protons that
are almost back to back. To leading order in perturbative QCD the reaction proceeds via the partonic subprocesses

a(pa)+ b(pb) → H(KH)+ c(Kj) , (2)

with parton c fragmenting into the observed jet. Specifically, the following channels can contribute: gg → Hg,
gq → Hq and qq̄ → Hg [26–28]. The corresponding Feynman diagrams are depicted in Fig. 1. In the calculation of
the scattering amplitudes, we take the quark masses to be zero, except for the top quark mass Mt. Therefore the
Higgs boson can couple to gluons only via a top quark loop. We consider the limit Mt → ∞ in which this coupling can
be approximated by a point interaction. The corresponding Feynman rules of the effective Lagrangian can be found,
for example, in Ref. [28]. Furthermore, we perform a lightcone decomposition of the two incoming hadronic momenta,
PA and PB , in terms of the light-like vectors n+ and n−, which satisfy the relations n2

+ =n2
− =0 and n+·n−=1:

Pµ
A = P+

A nµ
+ +

M2
p

2P+
A

nµ
− , and Pµ
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M2

p

2P−
B

nµ
+ + P−

B nµ
− . (3)

The partonic momenta pa and pb can be expressed in terms of the lightcone momentum fractions (xa, xb) and the
intrinsic transverse momenta (paT , pbT ), as follows

pµa = xaP
+
A nµ

+ +
p2a+p2

aT

2 xaP
+
A

nµ
− + pµaT

, and pµb =
p2b+p2

bT

2 xbP
−
B

nµ
+ + xbP

−
B nµ

− + pµbT . (4)

Using n+ and n− the lightcone components of any vector v are defined as v± ≡ v · n∓, while v⊥ refers to the
components of v orthogonal to the proton momenta PA and PB. Moreover, one has v2⊥ = −v2

⊥. Therefore in Eq. (4),
if we neglect the proton mass, pµaT = pµa⊥ and pµbT = pµb⊥.
We assume that, at sufficiently high energies, TMD factorization [10, 11] holds for the process in Eq. (1), hence its

cross section is given by the convolution of one soft, partonic correlator for each proton and a hard part,

dσ =
1

2s

d3KH

(2π)3 2EH
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(2π)3 2Ej
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{
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∣
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∣

∣

2
}

, (5)

with s = (PA + PB)2 being the total energy squared in the hadronic center-of-mass frame. The sum in Eq. (5) runs
over all the partons that take part in the reaction, the appropriate trace is taken over Dirac and Lorentz indices,

and Mab→Hc denotes the amplitude for the process ab → Hc. The parton correlators Φ[U ]
a,b describe the hadron →

parton transitions. They can be parameterized in terms of TMDs and are defined in terms of QCD operators on the
lightfront (LF): ξ·n≡ 0, where n ≡ n− for parton a with momentum p = pa and n ≡ n+ for parton b with momentum
p = pb. Specifically, at leading twist the quark correlator for an unpolarized hadron can be written as [29, 30]

Φ[U ]
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T
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T
)
[/pT , /P ]ij
2Mp

}

, (6)
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where we have introduced the sum and difference of the final transverse momenta, K⊥ = (KH⊥ − Kj⊥)/2 and
qT = KH⊥ +Kj⊥. Moreover, v is the vacuum expectation value and φ is the azimuthal angle between K⊥ and qT ,
namely φ = φ⊥ − φT . The functions A, B, and C contain convolutions of the various TMDs and, besides q2

T
, they

depend also on the Mandelstam variables ŝ, t̂, û for the partonic subprocesses in Eq. (2), which satisfy the relations

ŝ = (pa + pb)
2 = 2 pa · pb = (KH +Kj)

2 = M2
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s eyj ,
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= (pb −KH)2 = M2
H − 2 pb ·KH = M2

H − xb M⊥

√
s eyH , (12)

with ŝ+ t̂+ û = M2
H . The explicit expressions for A, B and C are provided in the following three subsections.

A. Angular independent part of the cross section

The term A in Eq. (11) is given by the sum of contributions from the relevant partonic subprocesses, i.e.

A(q2
T
) =
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1 f
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In Eqs. (14)-(16), Nc is the number of colors and we have introduced the convolutions of TMDs

C[w f f ] ≡
∫

d2paT

∫

d2pbT δ
2(paT + pbT − qT )w(paT ,pbT ) f(xa,p

2
aT
) f(xb,p

2
bT ) , (18)

with the transverse weight whh
0 given by

whh
0 =

1

M4
p

[

(paT · pbT )
2 −

1

2
p2
aT

p2
bT

]

. (19)

The expressions in Eqs. (14)-(16) are in full agreement with the unpolarized partonic cross sections calculated for the
first time in Ref. [26]. The term in Eq. (17), due to the presence of linearly polarized gluons inside an unpolarized
proton, is a new result, similar to the modifications of the transverse momentum distribution of Higgs bosons [3, 4]
and (pseudo)scalar quarkonia [35] inclusively produced in hadronic collisions.

B. The cos 2φ angular distribution of the Higgs-jet system

Similarly to Eq. (13), the term B in Eq. (11) can be written as

B(q2
T
) =

∑

a,b,c

Bab→Hc , (20)
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FIG. 1: The Z-boson transverse momentum qT spectrum in pp collisions at the LHC [1].

enhanced contributions in the ratio M/qT to the perturbation series expansions for the physical observables
to all higher orders in the QCD coupling. It is only after this generalized factorization analysis — going
beyond the collinear factorization — is carried through that the physical behavior of the Z boson spectrum
observed in Fig. 1 can be predicted.

A second example concerns the rise of proton’s structure functions at small longitudinal momentum
fractions. Since in pp collisions the product of initial-state longitudinal fractions scales like 1/s at fixed
momentum transfer, where s is the squared centre-of-mass energy, as we push forward the high-energy frontier
more and more events at small longitudinal fractions contribute to processes probing short-distance physics.
Many hard-production cross sections at the LHC receive sizeable contributions from proton’s structure
functions in this region. As parton longitudinal momenta become small, the fraction of momentum carried
by transverse degrees of freedom becomes increasingly important.

Fig. 2 shows the proton’s gluon density resulting from global fits [9] to hadronic collision data, performed
at LO, NLO, NNLO [10–12] of perturbation theory, as a function of the longitudinal momentum fraction
x for di↵erent values of the evolution mass scale Q2. In the low-x regime the perturbative higher-order
corrections to structure functions are large, and the gluon pdf uncertainty is large. The strong corrections at
low x come from multiple radiation of gluons over long intervals in rapidity [13, 14], in regions not ordered in
the gluon transverse momenta pT , and are present beyond NNLO to all orders of perturbation theory [15, 16].
The theoretical framework to resum these unordered multi-gluon emissions is a generalized form of QCD
factorization [17, 18] in terms of TMD pdfs. Analogously to the Drell-Yan case discussed earlier, the TMD
pdfs obey a suitable set of evolution equations [19–21], appropriate to this kinematic region. These provide
another generalization, valid in the high-energy limit, of the ordinary renormalization-group evolution. The
TMD factorization in this case allows one to resum logarithmically enhanced corrections in the ratio

p
s/Q

to all higher orders in the QCD coupling.
Besides the above examples of Drell-Yan and structure functions, TMD factorization theorems apply to a

wide variety of processes at the LHC. In particular, with extensive measurements of Higgs boson production
at the LHC Run II, a new set of QCD processes becomes available in which the Higgs boson acts as a
color-singlet, pointlike source (in the heavy top limit) which couples to gluons. This is to be contrasted
with Drell-Yan and deep-inelastic scattering cases, based on weak and electromagnetic currents providing
color-singlet pointlike sources coupled to quarks. This opens up the possibility of a new program of precision
QCD measurements in gluon fusion at high mass scales in the LHC high-luminosity runs [22, 23].

Analogously to the case of vector bosons in the example of Fig. 1, theoretical predictions for the Higgs-
boson production di↵erential spectrum over the whole range in transverse momenta accessible at the LHC

Z-boson transverse momentum qT spectrum in pp collisions at the LHC 
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 
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FIG. 1: (Color online.) The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
√
2.4 GeV(solid maroon)

to Q = 5 GeV(dashed blue) and Q = 91.19 GeV(dot-dashed red). The upper plot is found by evolving the Gaussian fits of
the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15]. In the case of the
Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits, the down quark
Sivers function is obtained by multiplying the up quark Sivers function by −1.35. These functions acquire an overall reversal
of sign if used in Drell-Yan.

lattice QCD calculations [48] can aid in providing mean-
ingful parametrizations of the nonperturbative input over
the whole of phase space and open up interesting ques-
tions regarding the matching of purely nonperturbative
descriptions of the Sivers function to pQCD.

C. Evolved Gaussian Parametrizations

Figure 1 suggests that, apart from the tail at large
kT , the Sivers function continues to be well described by
a Gaussian shape, even after evolution to large Q. To
describe the evolution of a purely Gaussian parametriza-
tion, with the x and kT dependence factorized, requires
only a specification of the scale dependence of the Gaus-
sian parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space,
separately for each value of Q and x. Because of the
general convenience of working with Gaussian functions,
we have obtained Gaussian fits for a range of Q starting
at Q =

√
2.4 GeV for the Bochum and Torino fits up

to Q = 90 GeV. The fits are obtained using the Wol-
fram Mathematica 7 FindFit routine, and examples
are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is shown in
Table I. (Fortran, C++, and Wolfram Mathematica

7 code that produce evolved Gaussian fits is available

at [49].)

In Fig. 2, we illustrate the quality of the Gaussian
fits to the Sivers function at intermediate and large
Q (Q = 5 GeV and 91.19 GeV, respectively). In
practice, the Sivers effect is often probed via observ-
ables like Eq. (52), so we have plotted the integrand,
−2πk3TF

⊥ up
1T (x, kT ;µ,Q). Note that, after the evolution

to large Q, the −2πk3TF
⊥ up
1T (x, kT ;µ,Q) acquires a very

broad tail for both the Bochum and Torino fits. The
tail falls off slowly; for Q = 91.19 GeV, the ratio of the
value of the Bochum fit at kT = 10 GeV to the value at
kT = 5 GeV is about 0.65. This is roughly consistent
with the 1/kT fall-off at large kT that is expected from
the power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where the ra-
tio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT,max (GeV) the Gaussian fits to
the evolved Torino Sivers function drop to less than 0.8
of the original evolved Sivers function and similarly for
kBochum
T,max .

That the description at small kT remains Gaussian is
not entirely surprising given that the input we use for
the nonperturbative evolution is Gaussian (gK(bT ) ∝ b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifi-
cation of the shape and normalization of the TMD PDF,

TMD evolution of up quark Sivers function 
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Torino and Bochum fits. Table I lists the Gaussian parameters for a selection of Q.

tant difference from the unpolarized case is in the match-
ing at large-kT . In the unpolarized case, the TMD PDF
(or FF) matches to a twist-2 collinear factorization treat-
ment at large kT , whereas the Sivers function matches
to a twist-3 collinear factorization treatment related to
the Qiu-Sterman formalism, as in Eq. (47). Thus, the
treatment provided in this article unifies several different
aspects of TMD physics.

It is worth commenting on the often repeated state-
ment (see, e.g., Ref. [51]) that calculations in covariant
gauges are impractical or inconvenient, and that working
in light-cone gauge is therefore preferred. In our work,
we find that the opposite is true. Namely, the calculation
of the perturbative parts (at least to order αs) follows
clear-cut steps in Feynman gauge, while the derivation
of TMD-factorization theorems is much more direct in
Feynman gauge than in light-cone gauge. (Indeed, we
are not aware of the existence of a detailed light-cone
gauge derivation of TMD factorization.) Moreover, once
the calculation of the perturbative parts has been per-
formed in Feynman gauge, a generalized parton-model in-
terpretation follows directly from the TMD-factorization
formula in Eq. (1). For these reasons, we advocate con-
tinuing to work in Feynman gauge for both calculations
and derivations.

We have implemented the evolution explicitly using
as input the already known γF , γD and γK (supplied
for easy reference in the Appendix, previous fixed-scale
Gaussian fits of the Sivers function at low-Q [14, 15], and
previous fits of the CSS formalism to DY [33]. For the ex-
plicit calculations in the present article, we have focused
only on the low-kT region where we need not be con-
cerned with the treatment of the Qiu-Sterman formalism
at large kT , and the approximations of Sec. V make sense.

The resulting evolved momentum-space Sivers functions
are shown in Fig. 1. Comparing with Fig. 1 of Ref. [22]
for the evolution of the unpolarized TMD PDF, one sees
even more suppression as Q is increased than in the un-
polarized case. Also note that a significant perturbative
tail is generated at large Q as shown in Fig. 2. We reem-
phasize that this should be kept in mind when evaluating
integrals like Eq. (52).

Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q
and find that the Gaussian function provides an excellent
approximation to the Sivers function at small kT , even
for Q ≈ 90.0 GeV. We have made these fits available, as
well as code for generating evolved TMDs at a website
maintained by two of us (Aybat and Rogers) [49].

Much work remains to be done in the effort to connect
a full QCD treatment of TMDs with phenomenology. An
explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be partic-
ularly important for a correct treatment of kT -weighted
observables in which the extra kT factors enhance the
contribution from the large kT region. The recent work
of Ref. [25] may help. Moreover, as new data become
available for both polarized and unpolarized cross sec-
tions, it will be useful to construct new fits that include
evolution from the beginning. Finally, explicit calcula-
tions, analogous to the ones presented here, need to be
applied to the other TMDs like the Boer-Mulders and
Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of bmax, g2 and the functional form
of gK(bT ). Reference [34], for example, finds that a larger
value of bmax is preferred, along with a corresponding

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function 

TMD evolution of Sivers function studied also by 
Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013
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FIG. 3. Extracted transversity distribution (a) and Collins regimentation function (b) at three different scales Q2 = 2.4 (dotted
lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. The shaded region corresponds to our estimate of 90% C.L.
error band at Q2 = 10 GeV2.
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FIG. 4. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to 90% C.L.
interval at Q2 = 10 GeV2.

E. Transversity, Collins fragmentation functions and tensor charge

We plot transversity and the Collins fragmentation function in Fig. 3 at two different scales Q2 = 10 and 1000
GeV2. In order to evaluate functions we solve appropriate DGLAP equations for transversity Eq. (69) and twist-3
collins functions Eq. (71). Due to the fact that neither of the functions mixes with gluons, these distributions do not
change drastically in low-x region due to DGLAP evolution.
Transversity enters directly in SIDIS asymmetry and we find that the main constraints come from SIDIS data only,

its correlations with errors of Collins FF turn out to be numerically negligible. We thus vary only χ2
SIDIS and use

∆χ2
SIDIS = 22.2 for 90% C.L. and ∆χ2

SIDIS = 6.4 for 68% C.L. calculated using Eq. (123). Since the experimental
data has only probed the limited region 0.0065 < xB < 0.35, we define the following partial contribution to the tensor
charge

δq[xmin,xmax]
(
Q2
)
≡
∫ xmax

xmin

dxhq
1(x,Q

2) . (127)

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a

Extraction of transversity and Collins 
functions with TMD evolution  

(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)

transversity 
distributions

moment of Collins 
functions
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
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(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with

(Kang, Prokudin, Sun, Yuan, 
arXiv:1505.05589)

comparison with phase 1 
extraction, Q2 = 2.4 GeV2 
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FIG. 2. Double ratio RU/RL versus 2φ0 in the bin z1 ∈
[0.3, 0.5], z2 ∈[0.5, 0.9] (top) and bin z1 ∈ [0.5, 0.9], z2 ∈
[0.5, 0.9] (bottom). The solid lines show the results of the fit.

tio RU/RL(C) follows the expression

RU

RL(C)
= A cos(2φ0) +B, (3)

where A and B are free parameters. B should be consis-
tent with unity, and A mainly contains the Collins effect.
The AUL, AUC are used to denote the asymmetries for
UL and UC ratios, respectively.
The analysis is performed in (z1, z2) bins with bound-

aries at zi= 0.2, 0.3, 0.5 and 0.9 (i = 1, 2), where comple-
mentary off-diagonal bins (z1, z2) and (z2, z1) are com-
bined. In each (z1, z2) bin, normalized rates RU,L,C and
double ratios RU/RL,C are evaluated in 15 bins of con-
stant width in the 2φ0 angles. In Fig. 2, the distributions
of the double ratio RU/RL are shown for two highest (z1,
z2) bins with the fit results using Eq. 3. In Fig. 3, the
asymmetry values (A) obtained from the fit are shown as
a function of six symmetric (z1, z2) bins. Studying the
dependence on pt is valuable for investigating the trans-
verse momentum dependent evolution of the Collins func-
tion. The expected behavior of the Collins asymmetries
as a function of sin2θ2/(1 + cos2θ2) is linear (see Eq. 2).
Therefore, the Collins asymmetries are investigated also
in bins of pt and sin2θ2/(1 + cos2θ2), as shown in Fig. 4
and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties

are investigated. An important test of the analysis
method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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(z1, z2) for the UL (dots) and UC (triangles) ratios. The
lower scales show the boundaries of the bins in z1 and z2.
Theoretical predictions from the authors of Ref. [20] are over-
laid, where the hatched areas show the predicted bands and
the points show the center values.
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of Ref. [20] are shown using the hatched bands and the corrse-
ponding points shows the center values.

0 0.2 0.4 0.6 0.8 1

U
L

A

0

0.05

0.1

)2θ
2/(1+cos2θ

2sin
0 0.2 0.4 0.6 0.8 1

U
C

A

-0.02

0

0.02

0.04

FIG. 5. Asymmetries as a function of sin2θ2/(1 + cos2θ2) for
UL (dots) and UC (triangles) ratios. Linear fits with the con-
stant term being set to zero (dashed line) or a free parameter
(solid line) are shown.

predictions for BES-III e+e- Collins asymmetry A0 in 
excellent agreement with data, Q2 = 13 GeV2                     

(some difficulties without TMD evolution)
(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)



so far ….

Evidence for gaussian k⊥ and p⊥ dependence of 
unpolarised TMD-PDFs and TMD-FFs  

Sivers and Collins effects are well established, many 
transverse spin asymmetries resulting from them. 

Sivers function and orbital angular momentum?                     
GPDs and orbital angular momentum?

Much progress in studies of TMD factorisation and TMD 
evolution; phenomenological implementation in progress  

Gluon TMDs deserve special attention; they 
might play a role at LHC 

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical 
modelling, should lead to a true 3D imaging of the proton 

waiting for JLab 12, new COMPASS results, future facilities.…
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Main EIC plans in the world 

RHIC ! eRHIC 

LHC ! LHeC 

CEBAF ! MEIC/EIC 

FAIR ! ENC 

HERA 

EIC@HIAF�

4 Electron Ion Collider plans in the world….. 



Electron Ion Collider:
The Next QCD Frontier

Understanding the glue
that binds us all

1

ar
X

iv
:1

21
2.

17
01

v2
  [

nu
cl

-e
x]

  3
 F

eb
 2

01
3

future facilities 
and experiments: 
D-Y @ COMPASS  

JLAB 12 GeV 
EIC  

BESIII 
AFTER  

NICA-SPD 
…………



1D         

14
Tuesday, 16 June 15

sexploring the 
3D structure of 

the nucleon 



1D         

14
Tuesday, 16 June 15

1D         

14

3D         

Tuesday, 16 June 15

1D         

14

3D         

Tuesday, 16 June 15

courtesy of A. Bacchetta

thank you!


