22 Settembre 2015 SIF 2015 – Roma

Il programma sperimentale italiano al JLab SVPERIO.

UTVTO

SINFN

_ab12

Evaristo Cisbani / ISS e INFN-Sanità

- Introduzione al Jefferson Laboratory
- Sperimentazione fisica
 - Struttura del nucleone
 - Violazione di parità nella diffusione dell'elettrone
 - Struttura e dinamica nucleare
 - Spectroscopia adronica
 - Ricerca di materia oscura

Thomas Jefferson National Accelerator Facility

- 1987: Inizio costruzione
- 1995: Primi esperimenti fisica
- 1997: Energia a 4 GeV (goal di progetto)
- 2000: Energia a 6 GeV
- 2014: Energia a 12 GeV

- Newport News / Virginia / USA (3 ore da Washington DC)
- Finanziamento DOE + Enti Locali
- Direttore: H. E. Montgomery (ex associate director for research al Fermilab)
- 2000 Utenti internazionali
- Ricerca fondamentale con acceleratore di elettroni (CEBAF) e 4 sale sperimentali
- Ricerca applicata con FEL ed altre facility
- Sito Web: www.jlab.org

3IF 2015 / Roma

Acceleratore Lineare Continuo di Elettroni - CEBAF

- Energia fino a 12 GeV con $\delta E/E \sim 10^{\text{-}4}$
- Eccellente emittanza: ~ qualche nm-rad
- Fascio polarizzato long. ~ 85%
 - (1kHz helicity flip)
- Corrente $\leq 100 \ \mu A$
 - 100% duty factor (CW, 499 MHz)
- 4 sale sperimentali

Cavità SuperConduttrici

Iniettore

Acceleratore lineare efficace di circa 2.5 km

JLab: Sale sperimentali 2014 - 2020

Hall A	Hall B/CLAS12	Hall C	Hall D/GLUEX
Very large equip. and flexible installations, high lumi	2π coverage, extended particle ID	Large and flexible installations, high lumi	Real photon beam, new Hall
2 High momentum resolution spectrometers 1 large acceptance, high lumi spectrometer with hadron ID dedicated equipment for neutron and gamma	New spectrometer, fixed installation	Two Asymmetric High momentum range and high resolution spectrometers "super high" momentum spectrometer dedicated equipment	Excellent hermetic coverage, Solenoid field High multiplicity reconstruction
High beam current lumi 10 ³⁸ cm ⁻² s ⁻¹	Forward tagger for real photons	High beam currents (>100 μA), lumi 10³⁷ cm⁻² s⁻¹	10 ⁸ linearly pol., up to 12 GeV, real photons/s
3He T/L pol. target, many unpol. targets from H to Pb	NH3/ND3 pol. Target, trans. polarized H/D target	NH ₃ /ND ₃ Polarized long. target, high flexibility unpol. from H to Pb	
hallaweb.jlab.org	www.jlab.org/Hall-B	www.jlab.org/Hall-C	www.jlab.org/Hall-D

Cisbani / Programma Italiano al

5

70 Ricercatori coinvolti (42.7 FTE)sda 11 Gruppi INFN e Università/Istitutid(BA, CA, CT, FE, GE, LNF, PD, RM1, RM1-CSanità, RM2, TO)http://www.ge.infn.it/jlab12/

Esperimento INFN attivo dal 2009 nasce dalla sinergia dei gruppi già coinvolti al JLab (AIACE + LEDA) per sfruttare al meglio le opportunità sperimentali offerte dall'aggiornamento a 12 GeV del JLab

Coordinatori Nazionali: M. Battaglieri (GE), G.M. Urciuoli (RM1)

Intensa attività sperimentale prevalentemente nelle sale A e B

Forte coinvolgimento negli sviluppi di nuovi apparati nelle sale sperimentali legati al raddoppio di energia da 6 a 12 GeV

Attivi al JLab anche diversi gruppi teorici italiani

La più grande collaborazione di ricerca Italiana negli USA

Struttura del nucleone Fattori di Forma TMD

GPD

Alta luminosità Fasci polarizzati Polarimetria adronica

Bersagli polarizzati Ampia accettanza Identificazione adroni

SIF 2015 / Roma

Proton G_E/G_M – an «unexpected» discrepancy

 $e + p \rightarrow e' + p'$ (elastic)

$$rac{d\sigma}{d\Omega}$$
 $\propto G_{Ep}^2+rac{ au}{arepsilon}G_{Mp}^2$

Rosenbluth Separation: assume single photon approximation

Prior to JLab/2000, expectations were that proton G_E/G_M fairly constant with Q^2

$$\mu \frac{G_{Ep}}{G_{Mp}} = -\mu \frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_p} \tan \frac{\vartheta_e}{2}$$

Polarization transfer from the incident electron to the scattered proton

At JLab, new class of experiments show proton G_E/G_M decreasing linearly with Q^2

$$R_{p} = \mu_{p} \frac{G_{E}(Q^{2})}{G_{M}(Q^{2})} \approx 1 - \underbrace{0.13 (Q^{2} - 0.29)}_{\text{D} t = T}$$

Pol. Transfer Discr.

Dramatic evidence of data discrepancy: Measurements? QED Approximation? Other model?

Proton G_E/G_M Form Factors

- Many theoretical models
 - VMD (lachello, Lomon, Bijker), generally good description of all FF
 - Relativistic CQM (Miller, Gross, ...)
 spin dependent quark density
 - Lattice QCD, start to give prediction
 - Dyson-Schwinger, dressed quarks, diquark correlation, ...
 - pQCD-based: G_E/G_M→const,
 Q²→∞
 - GPD-based: direct connection to quark OAM, FF's constraint GPD's

Most of them agree with current data but diverge at higher, unexplored, Q²

Neutron G_E/G_M Form Factors

Importance to go to high Q²

- All double polarization
- Rosenbluth separation affected by large nuclear structure correlations.
- Different models reproduce data, but at large Q² models predictions diverge
- pQCD log scaling too large for neutron
- Relativistic CQM works better but tends to overestimate

FF Flavor decomposition

 Enough FF data to separate the different flavor u and d contributions (assuming negligible s-quark) up to Q² ~ 3.5 GeV

EMFF measurements at high Q² by pol. methods

Method:	Polarization Transfer: $p(\vec{e}, e'\vec{p})$	Target Perp. Polarization: $p^{\uparrow}(\vec{e}, e'p)$								
Measure (one photon approx.)	$\frac{P_t}{P_l} \tan\left(\frac{\theta}{2}\right) \propto \frac{G_E^p}{G_M^p}$ P _t , P _l : trans. and long. polarization of the recoil proton	$A = \frac{N^+ - N^-}{N^+ + N^-} \sim \frac{G_E^p}{G_M^p}$ N ⁺ and N ⁻ : events with opposite transverse target polarization								
Many systematics effects (theory and exp.) cancel in ratio										
Figure of Merit (stat.) Ω : acceptace L: Luminosity σ : elastic xsec ~ E^2/Q^{12} Pb: beam polarization	$\begin{array}{l} \Omega \ L \ \sigma \ P_b^2 \ \epsilon \ A_y^2 \\ \sim \displaystyle \frac{\Omega \ L \ \epsilon}{Q^{16}} \\ A_y: \ \text{polarimeter analyzing power} \\ \epsilon: \ \text{polarimeter efficiency} \end{array}$	$\begin{split} \Omega \ L \ \sigma \ P_b^2 \ P_T^2 \\ \sim & \frac{\Omega \ L}{Q^{12}} \ P_T^2 \\ P_T : \text{Target polarization} \end{split}$								
At Q ² ~10 GeV ² expected: FoM _{pol_trans} ~ 10 × FoM _{targ_pol} (target polarization cannot tolerate large L)										
Challenges at high Q ² : <u>need to maximize</u> • (coincidence) acceptance (solid angle) • luminosity • polarization efficiency										
• beam polariza	ed beam energy)	eeping costs at «affordable» level								

Electromagnetic Nucleon Form Factors @12GeV

- Test per molti modelli (che includono differenti contributi di momento angolare dei quark)
- Studio regione di transizione tra la descrizione non- e perturbativa della QCD
- Vincoli alle distribuzioni generalizzate H ed E

Wide Angle Compton Scattering / E07-002

One of the «simplest» process ... poorly understood and measured

The "ultimate" description of the nucleon

Probe the nucleon structure by SIDIS

 $S_3 = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_G$ $\Delta\Sigma$: quark spin fraction ΔG : gluon spin fraction ď $\sigma_{\gamma q}$ q FF DF Nature of the nucleon spin? Ν п Dynamics of quarks and gluons in the nucleon? J-PARC BNL $\sigma(IN \to IhX) \sim \sum_{q} e_q^2 \cdot DF_q(x, k_\perp) \otimes \sigma_{\gamma q} \otimes FF_{q \to h}(z, K_\perp)$ DF_q : quark distribution function $FF_{q \rightarrow h}$: quark fragmentation function (Universality problematic in k_{\perp} dependent DF/FF) TWIST 2 20010T Ν h q q $f_1(x)$ $D_1(z)$ U \otimes U $h_{1L}^{\perp}(x, k_{\perp})$ $h_{1}(x), h_{1T}^{\perp}(x, k_{\perp})$ $G_1(z)$ L g1(X) $H_1^{\perp}(z, K_{\perp})$ $f_1 \stackrel{\perp}{+} (x, k_\perp)$ $H_{11}^{\perp}(z, K_{\perp})$ $g_{1T}(x, k_{\perp})$ $H_1(z), H_{1T}^{\perp}(z, K_{\perp})$ Т SIDIS cross section linear combination of convolutions of DF's and FF's, modulated by sin/cos of azimuthal angles

(some) Experimental directions

- Simultaneous extraction of different moments
- Disentangle dependencies on relevant variables
- Reduce statistical errors
- Toward high x / Valence region
- P_T dependence
- Q² dependence
- z dependence
- Measure moments by:

Dia 2 10³¹ 10³⁵ 10⁻² 10⁻¹ 10⁻¹ x₁

Limit defined by luminosity

Measure poorly known TMDs / extract different flavours

- Different beam/target spin states
- Different final state hadron(s) (π,K)
- Access Higher twists

TMDs MultiHall exp. at JLab/12GeV

		Quark			Experiment								
U L T		Test SIDIS		Complete TMDs investigation		Precise Measurements							
N u c l e o n	U	J	f ₁		h [⊥] ₁ Boer- Mulders	π^{\pm} K $^{\pm}$	π0	$egin{array}{c} \pi^{\pm,0} \ {\sf K}^{\pm,0} \end{array}$					
	L			G ₁ Helicity	h⊥ _{1L} ^{Worm-} gear				$egin{array}{c} \pi^{\pm,0} \ {\sf K}^{\pm,0} \end{array}$			π^{\pm}	
	Т	-	f⊥ _{1T} Sivers	g ⊥ _{1T} Worm- gear	h₁, h⊥ _{1T}					$rac{\pi^{\pm,0}}{K^{\pm}}$	$egin{array}{c} \pi^{\pm,(0)} \ \mathbf{K}^{\pm} \end{array}$	π^{\pm}	π^{\pm}
Target			LH2, LD2	LH2, LD2	LH ₂ + LD ₂	NH ₃ , ND ₃ or ⁶ LiD or HD	HD	³ He	³ He	NH ₃			
Detector					HMS SHMS	HMS SHMS + π ⁰ detector	CLAS12	CLAS12 + RICH	CLAS12 + RICH	SBS + HERMES RICH	SoLID	SoLID	
Lumi (cm ⁻² s ⁻¹)					10 ³⁶	10 ³⁶	10 ³⁵	10 ³⁵	10 ³⁴	4 10 ³⁶	2 10 ³⁶	10 ³⁵	
Experiment ID					E12-06-104 E12-09-017	C12-12-102	E12-06- 112, E12-09-008	E12-07- 107, E12-09-009	C12-11-111	E12-09-018 (SIDIS)	E12-10-006 E12-11-007 (SoLID n)	C12-11-108 (SoLID p)	

Sivers Moments Expected Stats.

Di-hadron and Higher Twist PDFs

DiHadron SIDIS $e p \rightarrow e' \pi \pi X$ $e \qquad e' \qquad P_{h2}$ $FF \qquad P_{h1}$ $N \qquad PDF$

Beam Spin Asymmetry

- long. polarized beam, unpolarized hydrogen target
- Twist-3 observable

$$A_{LU} \propto F_{LU} = e(x) H_1^{\triangleleft q} + f_1(x) \tilde{G}^{\triangleleft q}$$

e(x) \rightarrow quark-gluon correlations, nucleon scalar charge; moments connected to N- π σ term (nucleon mass, strange content ...)

DVCS and GPDs

Fourier-Transform of CFF—Spatial distributions

- electric charge distributed in the nucleon volume
- axial charge concentrated in the nucleon center

G. M. Urciuoli Parity violation in electron scattering DOI: <u>10.1393/ncr/i2015-10108-x</u> Fascio polarizzato Alta luminosità Apparati con performance molto stabili

Esperimenti di Violazione della Parità

 Misura accurata della asimmetria nei processi elastici (e DIS) di elettroni polarizzati longitudinalmente su nucleone/nucleo non polarizzato

- Accesso alle costanti di accoppiamento deboli elettroni-quark (u/d) delle correnti neutre, ovvero alla corrente debole del protone, ovvero all'angolo di mixing debole
- Pone limiti su esistenza di nuova fisica (QWeak, SOLID, Möller)
- Ha permesso la misura del contributo dei quark s ai fattori di forma del nucleone (HAPPEX, G0)
- Ha permesso la misura di importanti grandezze nucleari soppresse nei processi elettromagnetici ⇒ PREX

Lead (²⁰⁸Pb) Radius Experiment: PREX

Elastic Scattering Parity Violating Asymmetry $E = 850 \text{ MeV}, 9=6^{\circ} \text{ electrons on Pb}$

 Z_0 is a clean probe that couples mainly to neutrons

⇒ The radius of the neutron distribution in Pb is relevant to constraint astrophysics models

Stelle Di Neutroni e Neutron Skin

La neutron skin è legata direttamente all'energia di simmetria (costo di rompere la simmetria Z=N)

Maggiore la pressione di simmetria, più spessa la "pelle" poiché i neutroni sono spinti verso l'esterno, contro la tensione superficiale

Struttura e dinamica nucleare • Adronizzazione

Ipernuclei

Fasci intensi (polarizzati) Rivelatori a grande accettanza Identificazione di adroni Alta precisione (energia, impulso)

2 6

Hadronization of quarks

How hadrons form in scattering processes ?

Transverse momentum distributions in hadronization may be flavor dependent

H. Matevosyan et al., Phys. Rev. D85 (2012) 014021

Employ nuclei as analyzers of hadronization processes, to probe:

- The hadronization formation length (0-10 fm)
- The **time scale** on which a qq pair becomes dressed with its own gluonic field

Study the SIDIS reaction on nuclei; observables:

- The hadronic multiplicity ratio
- The transverse momentum broadening

Spettroscopia Ipernucleare e stelle di neutroni

D. L., A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

- Le stelle di neutroni osservate hanno masse intorno a 2 M_{sole}
- Ci sono evidenze che lasciano ipotizzare un core ricco di iperoni
- Modelli di interazione Λ-NN e Λ-NNN tendono a spiegare i valori osservati di massa
- Necessità di conoscere meglio il potenziale Λ-Ν
- Programma di misure di B_Λ su ⁴⁰⁻⁴⁸Ca approvato
 PR12-15-008

Spettroscopia Adronica Stati ibridi ed esotici Lattice QCD

Confinamento

Fasci intensi di fotoni quasi-reali, polarizzati Rivelatori grande accettanza per carichi e neutri Forte collaborazione Teorici-Sperimentali per l'analisi

> The HASPECT project (HAdron SPEctroscopy CenTer) DOI: 10.1088/1742-6596/527/1/012028

Beyond the quark model: hybrids and exotics

Quarks are confined inside colorless hadrons they combine to 'neutralize' color force

Other quark-gluon configurations can give colorless objects

QCD does not prohibit such states but not yet unambiguously observed

QCD Lattice calculations

Lattice-QCD predictions for the lowest exotics meson states:

0⁺⁻ 1.9 GeV 1⁻⁺ 1.6 GeV

> Hybrid mesons and glueballs mass range 1.4 – 3.0 GeV

This mass range is accessible in photoproduction experiments with a beam energy in the range 5 GeV < E_{γ} <12 GeV Perfectly matched to JLab12 energy!

Origine del confinamento in QCD

I mesoni leggeri sono stati di due quark (q-qbar) I numeri quantici del mesone sono determinati dai numeri quantici della coppia q-qbar

I quark in tali mesoni sono sorgenti di un flusso di carica di colore intrappolato in un tubo (stringa) che collega i due quark.

La formazione del tubo di flusso è legata alla auto-interazione dei gluoni attraverso la loro carica di colore (stati ibridi q-g-qbar)

I numeri quantici del mesone ibrido sono determinati dai numeri quantici della coppia qqbar ed eventuali stati eccitati del tubo di flusso gluonico

Tra questi, alcuni sono peculiari dei modi di eccitazione del tubo di flusso

mesoni esotici

Confinamento: Ricerca di Mesoni Ibridi Esotici

- Uso di fotoni polarizzati linearmente (8-9 GeV) che possono fluttuare in mesoni vettori
- I mesoni vettori interagiscono con il nucleone
- Il mesone diffuso (energie fino a 2.5 GeV) può risultare in un mesone ibrido esotico

$$Y = \begin{cases} f_1 \eta \to KK\eta \to KK\pi\pi\pi \\ b_1 \pi \to \omega \bar{\pi} \to \pi\pi \bar{\pi}\pi \\ \rho \pi \to \pi\pi\pi \end{cases}$$

✓ Uso di rivelatore a grande accettanza per particelle cariche e neutre
 ✓ Necessità di alta luminosità e quindi supporto di alta acquisition-rate
 ✓ Partial-wave analysis dei dati

Programma fondamentale della nuova sala D/GlueX ed in parte della attuale e futura sala B/CLAS12

Programma di spettroscopia / CLAS12

Quasi-real photoproduction \Rightarrow intense source of linearly polarized photons

Meson Spectroscopy:

Study of the meson spectrum in the mass range I-3 GeV:

- Study of the strangeonium spectrum and of strangeness rich states
- \star Search for exotic states
- * Search for hybrid mesons (qqg)

Baryon Spectroscopy:

* Study of the spectrum of baryons with very high strangeness content (Ξ and Ω)

* Search for exotic baryons

Forward Tagger

FT will be used to detect high energy photons to measure DVCS and study GPDs

Ricerca Materia Oscura

Fasci intensi Rivelatori dedicati

Oltre la materia «adronica»

Se si assume che la DM è composta da particelle si può ipotizzare una teoria di DM analogo al modello standard e ad un qualche mediatore tra SM e DM (dark photon)

APEX/HPS mappa di esclusione

SIF 2015 / Roma

E. Cisbani / Programma Italiano al JLab

3 7

Equipment / Physics Matrix @ 12 GeV

	HD	RICH	Forward	GEM/Si	HCAL	HPS
		The CLASID BYCH	Tagger		HCAL-J: a Hadron Calorimeter for the Hall A	THE HPS ECal
Equipment \ Physics	<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	<page-header><text><text><text><text></text></text></text></text></page-header>	<complex-block></complex-block>	<page-header><page-header><page-header></page-header></page-header></page-header>		<page-header></page-header>
TMDs, nucleon spin structure	Х	Х		Х	Х	
Spectrosco py		Х	Х			
Form Factors				Х	Х	
Parity Violating Electron Scattering				Х		
Light Dark Matter						Х

Intensa attività di sviluppo tecnologico per un esteso programma di fisica

Strong QCD Spectroscopy **Phenomenological Models**

Large Distance

Low Energy

JLab offers

DIS Scattering

Parton models

 $\sigma \sim \text{QED} \otimes \text{QCD}$ **High luminosity** Polarization (initial and final states) High beam stability **Complementary Equipment** Dedicated, optimized detectors