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Resistive m = 1 mode

We have considered the MHD equations to describe the plasma
dynamics in a large aspect ratio tokamak. We have linearized
the equations around an equilibrium state and considered a
perturbation:

~ξ = ξ(r) eλ t+i θ−i φ

For <(λ) > 0 we have an unstable perturbation (where
<(λ) is the growth rate),
<(λ) < 0 the perturbation is stable,
<(λ) = 0 marginal stability.
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Resistive layer

The plasma dynamics can be obtained by dividing the plasma in
two regions: a region in which the resistivity is negligible, and a
microscopic resistive layer around the surface

q(r) := r Bφ/(R0 Bθ) = 1, where ~B = Bφ êφ + Bθ êθ,

whose dynamics equations are

ε λ
1
x
ξ′′′′(x)− 2 ε λ

1
x2
ξ′′′(x)+

+
(
2 ε λ

1
x3
− x − λ2 1

x

)
ξ′′(x)− 2 ξ′(x) = 0, (1)

x = r−r0
r0

where r0 is such that q(r0) = 1,
ε = τH/τR < 10−5 is a small parameter (τH < 10−6 s is an
Alfvén time and τR > 10−1 s is the resistive time),
λ is the growth rate divided by τH .
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Boundary condition

The boundary condition are the matching condition of the
solution ξ, on the edges of the resistive layer, with the solution
outside the resistive layer:

lim
x→−∞

ξ(x) = ξ∞

lim
x→+∞

ξ(x) = 0,

lim
x→−∞

−π x
2

2
d ln(ξ)

dx
= λH ,

where λH is a real parameter which depends on the tokamak
profiles of current and pressure.
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Eigenvalue equation

A solution of the resitive dynamics equations in integral form
was found by Ara, Basu, Coppi et al, Annals of Physics 1978,
[ABC] in the following.
From this solution one obtains

λ̂ = λ̂H

{
λ̂9/4

8
Γ
[
(λ̂3/2 − 1)/4

]
Γ
[
(λ̂3/2 + 5)/4

]} , λ̂ := λ/ε1/3

λ̂H := λH/ε
1/3

valid for <
(
λ̂3/2

)
> 1 and λH > 0, which allows to find the

growth rate λ, when λH is assigned.
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WKB method

To get a solution in explicit form, taking advantage of the small
parameter ε, we tried with a WKB expansion:

ξ = exp
[
i

ε
S(x)

] +∞∑
i=0

εi ξi (x),

Putting the expansion in the dynamycs equations we get
S(x) = 0 and a recursive system of differential equations:(

x +
λ2

x

)
ξ′′0 (x) + 2 ξ′0(x) = 0, (2a)(

x +
λ2

x

)
ξ′′i (x) + 2 ξ′i (x) =

=
λ

x
ξ′′′′i−1(x)− 2λ

x2
ξ′′′i−1(x) +

2λ
x3

ξ′′i−1(x). (2b)
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First order solution

The perturbation equations can be easily solved for the lower
orders; at first order one gets

ξ0(x) =
ξ∞
2

[
1− 2

π
arctan(x/λ)

]
and

ξ1(x) =
ξ∞
π

[
4λ2 x

3 (x2 + λ2)3
− 5 x

6 (x2 + λ2)2
− 5 x

4λ2 (x2 + λ2)

]
.

Using the boundary condition for λH we get the perturbative
eigenvalue equation:

λH = λ− 5
4
ε

λ2
,

that can be solved by radicals (while the [ABC] eigenvalue
equation can be solved only numerically) and gives rise to three
solutions.
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Comparison between analytic and perturbative
solutions

Solving the [ABC] eigenvalue equation (in its range of validity)
for real values of λ̂ and comparing it to the perturbative
eigenvalue equation, a good agreement is obtained:

0.5 1.0 1.5 2.0 2.5

0.5
1.0
1.5
2.0
2.5

λ̂

λ̂H

The maximum difference is for λ = ε1/3 (it is easy to check that
when λ tends to ε1/3 the terms of the perturbative expansion
have the same orders of magnitude, so the perturbative method
is no longer available).
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Growth rate

The perturbative method shows a stable branch of the solution
that wasn’t taken into account by the [ABC] solution:

<(λ̂)

λ̂H

+1

−1

(in the plot the dotted lines λ = ±ε1/3 point out that for |λ|
approaching ε1/3 the perturbative solution is no longer
available).
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Conclusions

The stable branch could be experimentally investigated in
the future, to test the validity limits of the MHD;
the knowledge of the stable branch in the linear theory is
the basis for a nonlinear theory study.
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