

Produzione di (anti-)nuclei, barioni e risonanze adroniche in collisioni pp, p-Pb e Pb-Pb con l'esperimento ALICE

Stefania Bufalino Università e INFN, Torino per la Collaborazione ALICE

S. Bufalino - SIF 2015

ALICE

7

A selection of results from ALICE

- The ALICE (A Large Ion Collider Experiment) detector
 - Particle identification performance
- Anti-matter production
 - Results from pp, p-Pb and Pb-Pb collisions
 - comparison with thermal model and coalescence approach
- Collectivity
 - Particle spectra and radial flow
 - Baryon-to-meson ratio
- Resonances
 - Resonance suppression
 - Nuclear modification factors

The ALICE detector

Particle identification

Centrality of the collisions

• Central collisions

- ➤small impact parameter b
- > high number of participant nucleons \rightarrow high multiplicity
- Peripheral collisions
 - ➤ large impact parameter b
 - \succ low number of participant nucleons \rightarrow low multiplicity

The anti-matter production

Deuteron in pp and Pb-Pb collisions

pp

Invariant production spectrum is well fitted by the Levy-Tsallis function in pp

 $\frac{\mathrm{d}^2 N}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = p_{\mathrm{T}} \frac{\mathrm{d} N}{\mathrm{d} y} \frac{(n-1)(n-2)}{nC(nC+m_0(n-2))} \left(1 + \frac{m_{\mathrm{T}} - m_0}{nC}\right)^{-1}$ where m_0 is the reference mass of the deuteron and n,C are fit parameters.

C. Tsallis. J.Statist.Phys. 52 479-487(1988)

Pb-Pb

- The Blast-Wave (BW) function fits well the data.
- Characteristic hardening of the spectrum with increasing centrality.
- These fits are used for the extrapolation of the yield to the unmeasured region at low and high p_T.

Blast wave model: E. Schnedermann et al., Phys. Rev. C48, 2462 (1993)

(Anti-)deuterons in p-Pb

Deuteron and anti-deuteron spectra become harder with increasing multiplicity also in p-Pb collisions

³He production in Pb-Pb collisions

 Spectra fitted well with Blast-Wave functions in different centrality bins

• As for the deuteron spectra the ³He spectra show radial flow

ALICE Coll. arXiv:1506.08951 [nucl-ex]

d/p ratio vs multiplicity

ALI-PREL-94743

The d/p ratio increases with the charged particle multiplicity: this is consistent with the coalescence picture

Congresso Nazionale

Roma- 21-25 Settembre 2015

d/p ratio vs multiplicity

The d/p ratio increases with the charged particle multiplicity: this is consistent with the coalescence picture

Congresso Nazionale

Roma- 21-25 Settembre 2015

d/p ratio vs multiplicity

Congresso Nazionale

Roma- 21-25 Settembre 2015

(Anti-)nuclei/nuclei ratio

The ratio nuclei/anti-nuclei is compatible with unity

Systematic uncertainties dominated by the limited knowledge of the cross sections of anti-nuclei interacting with the material of the detector spectra for nuclei and anti-nuclei are consistent within the current uncertainties

Deuterons B₂

The formation probability of deuterons can be quantified through the coalescence parameter B₂

Deuterons B₂

ALI-PREL-69364

The formation probability of deuterons can be quantified through the coalescence parameter B_2

Deuterons B₂

Nuclei/anti-nuclei mass difference

Test of the CPT invariance looking at the mass difference between nuclei and anti-nuclei

This test shows that the mass of nuclei and anti-nuclei are compatible within the

uncertainties.

The binding energies are compatible in nuclei and antinuclei as well.

ANT71: Nucl. Phys. B31 (1971) 235 Dor65: Phys.Rev.Lett14 (1965) 1003 MAS65: Nuovo Cim.39 (1965) 10 DEN71: Nucl. Phys. B31 (1971) 253 KES99: Phys.Lett. A255 (1999) 221

Observation of the anti- $\boldsymbol{\alpha}$

In the 2011 run data, 10 anti- α combining the PID from TPC and TOF were identified

 An offline trigger selects events with at least one ³He or ⁴He candidate.

• The statistics corresponds to about 23 million events of trigger mix (central, semicentral, min. bias)

ALI-PERF-36713

Nuclei mass ordering in Pb-Pb

Thermal model fit to ALICE data

 Describes hadron production assuming chemical equilibrium over seven order of magnitude

 Measured absolute yields (dN/dy) in Pb-Pb collisions are well described by a thermal model with a temperature T=156 ± 2 MeV

Deviations for

- Protons: incomplete hadron spectrum, baryon annihilation in hadronic phase, ...?

- K*0 resonance: re-scattering in the late hadronic phase?

THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 142 SHARE: Petran et al, arXiv:1310.5108

Collectivity

Invariant p_{T} distributions in Pb-Pb

Hardening of the spectrum with increasing centrality. *Mass ordering as* expected from hydrodynamics.

Invariant p_{T} distributions in Pb-Pb

Hardening of the spectrum with increasing centrality. *Mass ordering as* expected from hydrodynamics.

- Particles with similar mass have similar mean p_T in central Pb-Pb
- Expected in presence of collective hydrodynamic expansion
 - → Clear signature of **radial flow**

Blast-Wave fit

In a thermalized system the radial expansion is driven by the pressure gradient from inside to outside. Resulting in boosted $p_{\rm T}$ spectra

 \diamond Hydro models describe spectra fairly well

Simultaneous Blast-Wave model fit to the π , K, p spectra in central Pb-Pb collisions: - radial flow $<\beta_T> \approx 0.65 \sim 10\%$ larger than at RHIC - kinetic freeze-out temperature $T_{kin} \approx 95$ MeV

Blast-Wave fit

ALICE, Phys. Lett. B 728 (2014) 25-38

In Pb-Pb:

-Clear evolution with centrality

In **p-Pb:**

- qualitatively similar trend of the parameters

- Larger $<\beta_{T}>$ in p-Pb for similar particle multiplicity density

In **pp**:

- Measurements versus

multiplicity follow

Qualitatively PYTHIA-CR shows a similar

trend as the data

 \rightarrow other final state mechanisms can

mimic the effects of radial flow!

Baryon-to-meson ratio

ALICF

ALICE, Phys. Lett. B 728 (2014) 25-38 ALICE, Phys. Rev. C 91 (2015) 024609

Resonances

Hadronic phase

- Reconstructible resonance yields may be changed by hadronic processes after chemical freeze-out:

- ■Regeneration: pseudo-elastic scattering of decay products (e.g. $\pi k \rightarrow K^* \rightarrow \pi k$)
- Re-scattering:
 - Resonance decay products undergo elastic scattering
 - Or pseudo-elastic scattering through a difference resonance
 - Resonance not reconstructed through invariant mass

Ratios of Yields

- K^{*0}/K
 - Central Pb–Pb: significantly suppressed
 w.r.t. peripheral, pp, p–Pb, or thermal model
 Consistent with the hypothesis that
 re-scattering is dominant over regeneration
- ф/К
 - No strong dependence on centrality or collision system
 - φ lifetime ~10 xlonger than K^{*0}, re-scattering effects not significant
 - Ratio for central Pb–Pb consistent with thermal model
- Ratios in p–Pb consistent with trend from pp to peripheral Pb–Pb

pp: ALICE, *Eur. Phys. J. C 72 2183 (2012)* Pb–Pb: ALICE, *Phys. Rev. C 91 024609 (2015)* Thermal Model: J. Stachel *et al., SQM 2013*

Nuclear Modification Factors

In Pb–Pb:

– Shape differences between p and φ due to differences in reference (pp) spectra

– Strong suppression of all hadrons at high $p_{\rm T}$

 $R_{AA}(p_{T}) = \frac{\text{Yield}(A-A)}{\text{Yield}(pp) \times \langle N_{coll} \rangle}$

In p–Pb:

- No suppression of ϕ w.r.t. pp for $p_T > 1.5$ GeV/c

– Intermediate p_T : Cronin peak for p, smaller peak for φ

– Possible mass dependence or baryon/meson differences in R_{pPb}

Summary

Anti-matter measurements:

- Both coalescence and thermal model are successful in the description of

particular aspects of the measurements:

≻Integrated yields well described by the thermal model

➢ Particle ratios and coalescence parameter trends in agreement with the coalescence model predictions

Signatures of collectivity

- Hydrodynamic models successfully describe the evolution in Pb-Pb
- Suggestions for collective behaviour in small systems \rightarrow more investigation

Resonance Suppression:

- Central Pb–Pb: K^{*0} suppressed (re-scattering) φ not suppressed (longer lifetime)
 - From K^{*0}/K^{-} ratio: lower limit on lifetime of hadronic phase: 2 fm/c
- p–Pb: K^{*0}/K and ϕ/K ratios follow trend from pp to peripheral Pb–Pb

Nuclear Modification Factors:

- High- p_{T} suppression observed in central Pb–Pb (RAA) but not in p–Pb
- High- p_{T} behavior of resonances similar to stable hadrons

What's next?

S. Bufalino - SIF 2015