

Quarks and gluons are usually confined inside hadrons, But what happens if they collapse in a wide space region as during the Big-Bang ?

Temperature decreases

Where to look for QGP : The Phase Diagram

High temperature and low baryon density (RHIC + LHC)

Present Ion Colliders

LHC Collider

 $\text{Protons}\,\rightarrow\,\text{7000 GeV}$

 $Pb \rightarrow 2500 \ GeV/N$

RHIC Collider

 $Protons \rightarrow 250 \, \text{GeV}$

 $\text{Au} \rightarrow 100 \text{ GeV/N}$

How Lead beam is obtained at LHC

Lead and proton beam inside LHC

Use the two separate radiofrequency systems and their carefull tuning of the two beam orbits to reliably collide the two beam in the four interaction regions. Lead ions are 208 times heavier and have 82 times more positive charge than protons, but in the same magnets.

Collisions with asymmetric and different beams : PB =1.58 TeV , p =4,0 TeV \rightarrow 5.02 TeV/N c.m.s. LHC world premiere !

All 4 LHC experiments involved

Centrality definition

How to characterize the hot medium I: Hadrochemistry based on thermal model

How to characterize the hot medium II : Particle production

Relativistic hydrodynamical models describe reasonably well particle production validating the assumption of a matter which has reached thermal equilibrium after the collisions

How to characterize the hot medium III : Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\left\langle N_{\text{COLL}} \right\rangle_{AA} \text{Yield}_{pp}(p_T)}$$

Indicates if in HI collisions the yield of particles, compared with pp yield , scales with the number of collisions or not

Nuclear modification factor R_{AA} : a compilation

Hadron traversing a hot and dense medium loose substantial energy via gluon radiation and elastic scattering

How to characterize the hot medium IV from inside via hard probes

C: Hot medium tomography using hard probes produced in the collision

Heavy Flavours ,Jets , high p_t particles: we can calculate how many are produced

How to characterize the hot medium V: Elliptic flow v2

Muller et al Annu. Rev. Nucl. Part. Sci. 2012.62:361-386.

Elliptic flow v₂

http://en.wikipedia.org/wiki/Pitch_drop_experiment

Date	Event	Duration	Duration
		(months)	(years)
1927	Hot pitch poured	-	-
October 1930	Stem cut	0	0.0
December 1938	1st drop fell	98	8.1
February 1947	2nd drop fell	99	8.2
April 1954	3rd drop fell	86	7.2
May 1962	4th drop fell	97	8.1
August 1970	5th drop fell	99	8.3
April 1979	6th drop fell	104	8.7
July 1988	7th drop fell	111	9.2
November 2000	8th drop fell	148	12.3
17 April 2014	9th drop touched 8th drop	(156)	(13.4)
24 April 2014	9th drop separated from funnel during beaker change	156	13.4

PLANCK Cosmic Microwave Background

HI collisions QGP

500

Multipole moment l

Understanding universe structure

1500

1000

٥Ĕ

10

100

y[fm]

Understanding initial QGP conditions and transport theory

But are we observing effects related to the creation of a hot, dense new QGP state or these are reflections of the presence of a Heavy Ion projectile ?

It is mandatory to check the magnitude of <u>Cold</u> <u>Nuclear Matter Effects (CNM</u>) using p-Pb collisions.

Uncertainties in the Parton Distribution Functions (PDF) for Nuclei: nPDF

$R_{AA/pA}$ with jets

In Pb-Pb R_{AA} jet suppression extends down to 30 GeV and up to 300 GeV

In p-Pb no CNM effects from 25 up to 800 GeV

R_{pA} with Z Boson

Z production proportional to n_{coll} : no suppression Rapidity asimmetry -> sensitivity to nPDF

Heavy Flavour/D meson R_{AA} and R_{pPB}

Cold Nuclear Matter effects cannot explain D meson suppression in Pb-Pb

Heavy Flavour/Beauty R_{AA} and R_{pPB}

Cold Nuclear Matter effects cannot explain Beauty hadron suppression in Pb-Pb

Conclusion I

At high p_t CNM effects in p-Pb collisions are not present in jets, hadrons, HF.

W/Z production are in agreement with pQCD scaled by the number of collisions.

What measured in Pb-Pb collisions at high $p_{\rm t}$ reveals the presence of a hot, dense QGP medium with low viscosity.

p-Pb data allow important informations on the nPDF

Production of guarkonia (cc) (bb) in Pb-Pb

Matsui T, Satz H (1986) PHYSICS LETTERS B 178(4): 416-422. Low pt enhanced Expected mainly for charm ²⁹

Production of quarkonia in Pb-Pb

Production of quarkonia in p-Pb

Conclusion II

At high p_t CNM effects in p-Pb collisions are not present in quarkonia

However at lower p_t effect not negligible.

Contribution of regeneration in Pb–Pb very important expecially for J/ψ

Quarkonia suppression in medium is observed

Shadowing in nPDFs is a possible explanation for suppression at low p_t in p-Pb

 J/ψ production in UPC

LHC as γp , γPb , $\gamma \gamma$ collider reach of important data for comparisons with different nPDF and gluon pPDF.

The "ridge " as measured at RHIC

37

Unexpected observation of a "ridge " in pp

CMS JHEP1009:091 (2010)

The near side ridge in Pb-Pb and p-Pb

The unexpected "double ridge " in p-Pb

Idea of using effective activity/energy to compare different collisions: an old idea

M. Basile et al : Universality Features in (pp), (e+e -) and Deep-Inelastic.Scattering Processes. Nuovo Cim. 79 A (1984) 1

42

The ridge in theory Hydrodynamical models

Analogy with Pb-Pb suggests a formation of mini-QGP with later hydrodynamic expansion

OK for PID flow

BUT is there enough time to thermalize the system?

The ridge in theory GLASMA + BFKL models

Colour reconnection and gluon saturation in the framework of a colour-glass condensate

Ok for double ridge

BUT not clear if it can explain mass hierarchy behavior observed in flow(s)

But is "the ridge " the only measurement where collective phenomena appear in high multiplicity events ?

Several other analysis show similar behavoir between high multiplicity p-Pb events and Pb-Pb collisions

Baryon (proton and Λ) to meson ratio

 Baryon/meson ratio in p-Pb events at high/low multiplicity show a behavior similar to Pb-Pb collisions

Conclusion IV

Multiplicity/activity is an important parameter in the comparison of different processes, allowing the appearence of similarities and common features among systems of different sizes.

It suggests a new approach in understanding QCD using different collisions as inputs and gives constraints on the dynamics of the collisions.

HF production vs event multiplicity/activity

Charm production show and increase with multiplicity faster than linear : presence of MPI or other QCD processes related to the high multiplicity enviroment.

Particle ratio vs event multiplicity/activity

- Continuos evolution across different system size
- Multiplicity as a system temperature monitor ?
- Need different variables (energy density ...)?

Conclusion V

Analysis as function of multiplicity/activity across several type of collisions and system sizes are fundamental to better understand QCD processes and particle formation.

A new challenge for RUN II.

Cold Nuclear Matter effects cannot explain results from lead-Lead collisions \rightarrow LHC has produced a hot dense medium (QGP) with low viscosity

Final remarks

Importance of shadowing effects in the nuclear Parton Distribution Functions

Strong similarities among lead-lead collisions and high multiplicity events in pp and proton-Lead collisions \rightarrow Evidence for similar collective effects and QCD dynamics

Proton-Lead collisions has opened a window on new interesting QCD studies crossing different collisions systems using the multuplicity/activity variables.