Recenti applicazioni del Local Effect Model a studi di radiobiologia

Congresso SIF 2015, Roma 21-25 Settembre
Basic concepts of radiation biophysics

- the DNA **Double Strand Break (DSB)** is considered the type of lesion most directly related to cell killing
- different radiation qualities produce the same spectrum of DNA lesions
- **BUT** the distribution of lesions inside the target can be very different
Basic concepts of radiation biophysics

- The DNA **Double Strand Break (DSB)** is considered the type of lesion most directly related to cell killing.
- Different radiation qualities produce the same spectrum of DNA lesions.
- **BUT** the distribution of lesions inside the target can be very different.

Photons (x-rays)
- Random DSB distribution

12C, Low LET
- 200 MeV/u, ≈ 16 keV/µm
- Random DSB distribution (photon-like)

12C, High LET
- 1 MeV/u, ≈ 690 keV/µm
- Non-random DSB distribution ($RBE>1$)
Modelling framework

- **Framework:** *Local Effect Model (LEM)*

- **Main ingredients:**
 - *Target (i.e. cell nucleus)*
 - *Amorphous track structure model*
 - *Photon dose response curve*

- **Higher-order chromatin structure:** "**Giant Loop Model**" of chromatin organization

DNA in cell nucleus:
\[\approx 6 \times 10^3 \text{ Mbp} \]

Giant Loops: \[\approx 2 \text{ Mbp} \]

Around 3000 domains of 2 Mbp (\approx 500 \text{ nm length})
Modelling framework

- Framework: **Local Effect Model (LEM)**

- **Main ingredients:**
 - *Target (i.e. cell nucleus)*
 - *Amorphous track structure model*
 - *Photon dose response curve*

- Higher-order chromatin structure: **“Giant Loop Model”** of chromatin organization

DNA in cell nucleus: \(\approx 6 \times 10^3 \text{ Mbp} \)

Giant Loops: \(\approx 2 \text{ Mbp} \)

Around 3000 domains of 2 Mbp (\(\approx 500 \text{ nm length} \))

Congresso SIF 2015, Roma 21-25 Settembre
A DNA DSB kinetic rejoining model based on the LEM
DSB kinetic joining model based on the LEM

DSB rejoining: bi-exponential decay

- Input Values: iDSB, cDSB (LEM calculated)
- Fit Parameters: half-lives fast and slow components

- Differential effects entirely due to micrometer-scale clustering of DSB
- Simplistic approach: e.g. chromatin condensation (EC/HC), different repair pathways not explicitly considered

- Congresso SIF 2015, Roma 21-25 Settembre
DSB kinetic rejoining model based on the LEM

- Successful application to a **large data set** to describe DSB rejoining over time
- **Predictive power** of the model also tested

Results support the relevance of micrometer-scale clustering of DSB!

Carbon

\[
\begin{align*}
t_{1/2\text{fast}} &= 9 \pm 1 \text{ min} \\
t_{1/2\text{slow}} &= 220 \pm 16 \text{ min}
\end{align*}
\]

CHO-K1 cells gel electrophoresis

Tommasino et al 2013 Rad Res
Track structure reconstruction based on γH2AX foci analysis
Track structure reconstruction based on γH2AX foci analysis

- **Mouse retina cells** (eyes irradiated ex-vivo)
- **Titanium ions** 114-129 keV/μm
- Fixation 15 min after irradiation
- DNA/γH2AX staining

- Microscopy analysis: *3D coordinates of cells and foci*
- Track reconstruction
- Modelling and statistical analysis

Mirsch et al 2015 PNAS
Track structure reconstruction based on γH2AX foci analysis

- **Mouse retina cells** (eyes irradiated ex-vivo)
- **Titanium ions** 114-129 keV/\(\mu\text{m}\)
- Fixation 15 min after irradiation
- DNA/γH2AX staining

- Microscopy analysis: **3D coordinates of cells and foci**
- Track reconstruction
- Modelling and statistical analysis

Mirsch et al 2015 PNAS
Acknowledgements