

CMS: il programma di update per HL-LHC

L.Demaria, INFN Torino

per la Collaborazione CMS

Societa' Italiana di Fisica, 101° Congresso annuale Universita di Roma La Sapienza, Roma 25/09/2015

Talk layout

- 1. The HL_LHC challenge
- 2. The CMS challenge
- 3. Tracker Detector
- 4. Calorimetry
- 5. Muon Detectors
- 6. Trigger
- 7. Conclusions

HL_LHC challenge

IND

- High Luminosity LHC, a natural extension of LHC program
 - goal is to reach 3000 fb⁻¹ in 10 years
 - x10 LHC Integral Luminosity
 - x5 LHC-0 instant Luminosity (=higher particle flux)
 - x5 LHC PU (140): now also perspective for x7 PU (200)

Why HL_LHC ?

• From F.Gianotti - Monday:

Full exploitation of LHC project with HL-LHC ($Js \sim 14 \text{ TeV}$, 3000 fb⁻¹) is mandatory

Present highest-E accelerator:

- \rightarrow detailed direct exploration of the TeV scale up to m ~ 10 TeV
- → measurements of Higgs couplings to few percent
- Results will inform the future
- F. Gianotti, Slr, Roma, 21/9/2019

Future colliders will give physics data:

- CLIC (ee) > 2035
- ILC (ee) > 2030
- CepC (ee) > 2028
- SppC (pp) > 2052
- FCC (ee-pp) > 2030 ?
- muon-coll > ??

HL_LHC is the best accelerator for HEP after 2024 (and up to at least 2030)

L.Demaria: CMS HL-LHC Upgrade

14 TeV, PU = 50/140 Major limitation if NO upgrade 1000 m_{x1} (GeV) CMS Phase I/II Delphes Simulation (list not complete) 5 Discovery Reach 800 300 fb⁻¹ Phase I 1000 fb⁻¹ Aged 1000 fb⁻¹ Phase II Reduced performances due to 600 3000 fb⁻¹ Phase II Radiation damage $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_4^0 H \tilde{\chi}_4^0$ 400 • Tracking in too high particle density • Pile-Up 200 • Data readout bandwidth 400 600 200 $m_{\tilde{\tau}^{\pm}} = m_{\tilde{\tau}^{0}} (GeV)$ 14 TeV. 3000 fb⁻¹. PU = 140 Events/2.0 GeV ∩^{.0.15} ∀ 2500 **CMS** Simulation Phase I age1k: H → ZZ* **CMS Simulation** Phase II: $H \rightarrow ZZ^* \rightarrow 4I$ Phase I age1k: $Z/ZZ \rightarrow 4I$ 2000 Phase II: Z/ZZ → 4I 0.1 1500 1000 0.05 500 122 124 126 ĭ20 100 150 200 250 300 M₄₁ [GeV] L.Demaria: CMS HL-LHC Upgrade 6

101°Congr.SIF, Roma 25/09/2015

128

m_{µµ} [GeV]

130

14 TeV

Phase II, 140 PU

Phase I, 50 PU

Phase I aged, 140 PU

CMS challenge

- **Radiation Tolerance** 10x than LHC (from 300 to 3000 fb⁻¹)
- High Performance at 200 Pile Up : more granular detector
- Maintain or improve L1 Trigger performance
 - Interesting events at 5-7 times larger rate : 750 kHz (from 100 kHz)
 - tracking trigger at L1
 - longer latency : **12,8 us** (from 3,2 us)
- Extended acceptance up to $|\eta| \sim 4$ for tracking / calorimetry / muon
- Particle PileUp mitigation : attribution of particles to primary vertex

Few facts:

- Tracker detector needs replacement (radiation)
- Calorimeter needs replacement in the Forward region (radiation)
- Electronics needs refurbishment in many detectors

L.Demaria: CMS HL-LHC Upgrade

CMS Upgrade... on a Nutshell

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to η ~ 4

New Endcap Calorimeters

Radiation tole rant - increased granularity

Barrel ECAL

Replace FE electronics

Trigger/DAQ

- L1 (hardware) with tracks and output rate up to 500-750 kHz
- Latency of 12.5µs
- HLT output rate up to 5-7.5 kHz

L.Demaria: CMS HL-LHC Upgrade

Muons

- Replace FE electronics in barrel DT and endcap CSC inner rings
- Complete CSC system in forward region (new GEM/RPC technology)
- Add muon-tagging up to η ~ 3

Upgrade start now !

• Despite the new CMS sub-detectors will be inserted on 2024, the time-schedule for construction is tight

L.Demaria: CMS HL-LHC Upgrade

Tracker Detector

- OUTER TRACKER : momentum resolution, tracking trigger (up to $|\eta| = 2,4$)
 - 6 'double-sensor' in barrel (10 single now); 5 double sensors disks (9 now)
- PIXEL DETECTOR : tracking seeding, vertex reconstruction, tracking extension
 - 4 barrel layers (as Phase-1); 10 disks (3 in Phase-1)

Pixel Detector: principles

Major worries:

radiation damage (up to $2 \ 10^{16} \text{n/cm}^2$); 1-Grad particle flux up to 3 GHz/cm^2 pix-hit

Sensors :

- dimensions (x1/4): 25x100 um² to 50x100 um2
- on-going R&D on : thin planar / 3D-silicon
 - reduce drift distance to minimize trapping
- small signals

Read Out Chip (ROC) :

- low noise, low threshold : <1000 e
- compact : 50x50 um²
- low power consumption : ~0,3-0,5 W/cm²
- digital local storing : x7 (rate) x4 (latency)
- readout : up to 5 Gbps data out
- Large ASIC ~ 2x2 cm²

ROC R&D in RD53 using CMOS 65nm (HEP novelty)

(faster, smaller, lower noise, more rad-hard)

L.Demaria: CMS HL-LHC Upgrade

101°Congr.SIF, Roma 25/09/2015

11

Pixel Detector

Readout Elements

- ROC contains 4 E-Links, up to 1.2 Gbps.
- 8 E-Link connected via 1-2m twisted to LP-GBT

Modules Readout

- L1, L2 (25x100um²)
 - 4 ROCs ; 16 E-LINks, 2 LP-GBT
- L3, L4 (50x200um²);
 - 8 ROCs, 8 E-Links ; 1 LP-GBT

IMPORTANT that ROC can reduce power when 1/4 channels are connected

Module Power

- DC-DC: problem of rad-hardness;
- R&D on Serial Powering

Service aspects

rapidity estention imply material inside acceptance: optimisation studies needed

Development of LP-GBT at high speed crucial (9-10 Gbps ?)

L.Demaria: CMS HL-LHC Upgrade

101°Congr.SIF, Roma 25/09/2015

12

L.Demaria: CMS HL-LHC Upgrade

Outer Tracker modules

PS modules: Macro Pixel + Strip

Macro Pixel: $1.5 \text{ mm} \times 100 \mu \text{m}$ DC coupled Strip: $2.4 \text{ cm} \times 100 \mu \text{m}$ AC coupled Module area: $\sim 5 \times 10 \text{ cm}^2$ Power: $\sim 6-8 \text{ W}$

L.Demaria: CMS HL-LHC Upgrade

2S modules: Strip + Strip

Strip: 5 cm \times 90 µm AC coupled (both sides) Module area: ~10 \times 10 cm² Power: ~4-5 W

DC/DC converter Concentrator IC (CIC) 10-12V lines: lower FE chip data current, lower material sparsification Low-power GigaBit Transceiver current under development CMS Binary Chip (CBC) Silicon strip sensors ilicon sensor **CF** support Al-CF spacer spacer CF stiffener ilicon sensor Flexible hybrid First SS prototypes exist

101ºCongr.SIF, Roma 25/09/2015

Sufficient charge, good annealing behaviour, lower I_{dark} and V_{bias} 200 µm active 320 µm physical is a good backup

⊙ 200 µm active 320 µm physical is a good backup

★ Adds 60 kg of inactive material uniformly distributed in the tracking volume

200 µm active and physical thickness is the preferred option

★ Active thickness can also be fine-tuned...

 n-in-p is the selected option, as it offers robust performance (i.e. graceful degradation) after heavy irradiation

Basic R&D essentially finished: the main properties of the sensors are defined

Material

Polarity

- MCz is the preferred option (but FZ is OK)
 - ★ Allows for long annealing times with no adverse effects
 - ★ Could be (eventually) operated at lower V_{bias}, mitigating the requirements on the cooling

Thickness

ê 12k

leugi 10k

8k

61

Seed

Outer Tracker sensors

L.Demaria: CMS HL-LHC upgrade

IUI CONGR.SIF, ROMA 25/09/2015

16

17

Tracking Trigger: 3 methods

Associative Memory (AM)

- large bank of patterns stored in a dedicated Associative Memory chip (similar to FTK solution)
- processing time linear with number of hits
- Tracker = 48 angular regions; about 200 stubs per event / region are expected
- stub coordinates loaded in Memory and matched patterns are considered as track candidates: 100 Million patterns recorded in AM chip (2 Million each)
- refit track candidates with full-resolution coordinates

Time-Multiplexed architecture

- uses Hough Transform
- all data from one event goes to one processing node; the node redirect one event to a single destination for complex process
- 5 secotrs in Phi and time multiplexing of 24
- uTCA processing board using Virtex-7 FPGA
- Tracklet-seeded road search
 - conventional road-based track search using FPGA
 - pairs of stubs in neighbouring layers (tracklets) projected to other layers; 168 triggering towers
 - L.Demaria: CMS HL-LHC Upgrade

Tracking Trigger AM Demonstrator 2015 Tracklet FPGA impementation 1/4 of barrel Data Source (FNAL/Brazil): Eight processing steps (red) implements the algorithm PRB Δt1 (Data Delivery) + Δt2(AM) + Δt3 (TF) in one sector emulating ~40 modules INFN mezzanine card Track output Sttub input FNAL nezzanine ard select Stub Forming Organize Match tracklet Track fit ~40 modules organization tracklets tracklet projections to projections stubs Demonstrator 2015

A final solution will be taken after complex demonstrators will be realised on 2015 - 2016

101°Congr.SIF, Roma 25/09/2015

test bench for algorithm development

estimation of resource requirements
extraction of rough processing latency

single MP / as Main Processor

runs on 1/(TM Period) events

MP

IPBus

Input Data Buffers

ub mapping to global coordinate

rack candidate fitting

Output Data Buffers

ECAL

Replacement of electronics obligatory to meet trigger requirements. This gives opportunity to revise the crystal supermodules

• **Readout of single crystals** - allowed by GBT bandwitdth (now 5x5 crystal only)

- **VFE replacement**: shorter shaping time (20ns instead of 40ns) allow to discriminates spikes
- Lower temperature: 8°C instead of 18°C APD noise reduction

Radiation damage and increased pile-up require detector REPLACEMENT. Foreseen a highly granular design of a sampling calorimeter (**HGC**) covering rapidity from 1,5 to 3. Already studied from CALICE Coll., provide single particle resolution and particle flow.

- **EE**: Si/W; 26 X₀ , 1.5 λ ; 28 samplings
- FH : Si/Brass; 3.5 λ ; 12 samplings
- **BH** : Plast/Brass; 5 λ ; 12 sampling

200 150 Baseline design based on 100 um thick detectors for rap < 3

250

onal normalised to 73e/um from CCE on pad sensor

MCz-200N

0-MCz-200P

dd-FZ-200N

A-dd-FZ-200F

-dd-FZ-320N

-dd-FZ-320F

100

-20°C, 10min@60°C, 1063 nm laser

10

fluence [1014 neg/cm2]

- Options for an extended HGC (rap < 4) considering 50um planar or 3D sensors
- Front End ASIC

21

assumption is 130nm CMOS

Radiation fluency up to 1.6 10¹⁶ n/cm² (higher rapidity) but dominated by neutron (TK is

to be verified rad-hard up to 400 MRad and above

25

20

signal [ke] 10

5

0

0

600 V

101°Congr.SIF, Roma 25/09/2015

10

fluence [1014 neg/cm2]

signal normalised to 73e/um from CCE on pad sensors, -20°C.

after 23 GeV proton irradiation, 1063 nm laser

23 GeV protons

25

20

5

0

0

600 V

Dose to HGC, 3000fb⁻¹

1e+07

1e+06

MCz-200N

FZ-200P

100

Dose [Gy]

HGC sensor & front-end

proton)

Si-Sensors:

HGC Performance

L.Demaria: CMS HL-LHC Upgrade

101°Congr.SIF, Roma 25/09/2015

22

Muon Detectors

Barrel (DT) electronics upgrade

 L1 Trigger & Readout upgrade (Minicrates)

Forward (CSC)

- Front End electronics replacement
- **Gas mixture test** for CSC and RPC
 - problem of greenhouse gas regulation

Adding redundancy to CSC

- RPC: RE3/1, RE4/1 possibly with 100ps precision
- GE1/1, GE2/1 : GEM detectors

EXTENSION in rapidity (to eta 3)

ME0 with GEM detectors

L.Demaria: CMS HL-LHC Upgrade

GEM detectors

- Super chambers made of double layer of trapezoidal triple-GEM chambers
 - Single GEM : x (20-25), TRIPLE GEM: gain of 8000-15000 !

Challenge of building LARGE-size GEM !

NEW FE-ASIC: VFTA3 designed in CMOS 130nm technology:

- signal both polarities
- interface to GBT at 320 MHz
- up to 25 usec trigger latency
- time resolution < 7.5 ns

L.Demaria: CMS HL-LHC Upgrade

GE1/1, GE2/1, ME0

10 proto-**GE1/1** constructed already

GE1/1, GE2/1 could be already installed during LS2

- ME0 : GEM detector covering rapidity up to 3 (or more) depending on HGC boundaries
 - L.Demaria: CMS HL-LHC Upgrade

Muon Performance

I N <u>F</u> N

o L1-Trigger

- High BW and processing power boards
- First layer to match detector information

L1-Trigger / HLT / DAQ

Second layer to produce Trigger objects

Trigger timing, throttling and control

 High Band Width bi-directional link allowing trigger information to steer readout

o DAQ

 Similar evt builder, HLT and storage as present Increase Band Width - 800 links x 100 Gbps with 30% occ. will provide 30 Tbps evt building throughput

o HLT

 Processing power scales as PU x L1 rate - need increase by a factor ≈ 52 wrt Run 2 at 200 PU

L1-Trig Performance

Muons

Electrons

Vertex-ID and jets

L.Demaria: CMS HL-LHC Upgrade

Italy involvements

- **TRACKER** : Ba, Ct, Fi, Mib, Pd, Pv, Pi, Pg, TO (21%) 100 FTE
- ECAL : Mib, Rm1, To, Ts
- RPC : Ba, LNF, Na, Pv (27%) 11 FTE
- **DT** : Bo, Pd, To (58%)
- **GEM** : Ba, Bo, LNF, Na, Pv 17 FTE

Conclusions

- HL-LHC is (right now) provides the major HEP program after year 2024
- Experiments have to survive to hostile conditions and achieve unprecedented performance to fully exploit the physics potential offered by HL-LHC
- A solid upgrade program is under his way for the CMS experiment
- Looking forward still for new surprises and excitement from LHC and to continue even deeper in HL-LHC, both for important measurements and possible new discoveries

R&D on CMOS 65nm (CMS+ATLAS), part of RD53

Radiation characterisation

- x-ray machine at LNL / Pd-INFN
 - Total Ionising Dose (TID)
 - 1 GRad in ~ 2 weeks
- Low-p at CN accelerator LNL
 - TID and Total Displacement damage
- TANDEM / SIRAD
 - Single Event Effects with Heavy Ion
- Studies on n-MOS, p-MOS
- Irradiation of IP-block, Noisemeasurements vs Irradiation

Digital Electronics:

- Simulation Framework
 - System-Verilog-UVM (VEPIX53)
- Digital Architecture Studies
- Input protocols definition
 - fast/efficient/continuos (while readout)
 - SEE robust

Activities of 2014 - now

Design in 65nm

- 6 silicon dies 2x2mm2 submitted
- CHIPIX65 IP-blocks
 - •DAC-curr, ADC, SRAM,
 - •SER/DES, sLVDS(TX/RX)
 - BandGap, D2RA digital cells
 - •JTAG
- CHIPIX65 Analog Very Front End
 - Synchronous chain
 - Asynchronous chain
- Integration of other RD53 IPs
 - DAC-volt (Prague)
 - SER (Bonn), BandGap (CPPM, CERN)

CHIPIX_SRAM, CHIPIX_IP_3,

CHIPIX_VFE_2

CHIPIX_BIAS

ARFA F⊕R IMFC

Backup Slides

Outer Tracker ASICs

MPA 1

Output

Interface

- CBC (CMS Binary chip):
 - 130nm CMOS
 - data inputs: 127 bottom-ch; 127 top-
 - correlation top / bottom + unsparsified binary readout
- CIC (Concentrator Integrated chip):
 - 65nm CMOS
 - buffer and sparsifies CBC data ullet

- MAP (Macro Pixel Asic):
 - 65nm CMOS
 - data inputs: 2000 pixels + SSA data
 - correlation top / bottom + sparsified binary data readout and stubs
- SSA (Short Strip ASIC):

Input each 25ns -

- 65nm CMOS
- process sensor signal and send unsparsified data

Pixel hits from Front- End: 120 pixels x 16 rows

L1 data @ L1

(1 MHz)

Stubs 🙋 BX (40 MHz)

L.Demaria: CMS HL-LHC Upgrade

35

L.Demaria: CMS HL-LHC Upgrade

LHC time-scale

HGC Modules

101°Congr.SIF, Roma 25/09/2015

L.Demaria: CMS HL-LHC Upgrade