

Il Programma di Upgrade di LHCb

Massimiliano Fiorini (Università di Ferrara, INFN Sezione di Ferrara)

On behalf of the LHCb Collaboration

Società Italiana di Fisica – 101° Congresso Nazionale Roma, 21-25 September 2015

- Introduction to LHCb
- LHCb upgrade
 - Physics motivation
 - Trigger upgrade
 - Detector upgrade
 - Tracking
 - Particle identification
- Conclusions

Introduction

- LHCb is a precision experiment devoted to the search for New Physics beyond the Standard Model (SM)
 - Study CP violation and rare decays in b and c quarks
 - Search for deviations from the SM due to virtual contributions of new heavy particles in loop diagrams
 - Sensitive to new particles above the TeV scale not accessible to direct searches

LHCb Collaboration

- ~900 participants
- 64 institutes
- 16 countries

The LHCb Experiment

- Single arm spectrometer
- Flavor factory
 - □ $b\overline{b}$ cross section $\sigma_{b\overline{b}}$ ~ 300 µb at 7 TeV
 - □ $c\overline{c}$ cross section $\sigma_{c\overline{c}} \sim 20 \sigma_{b\overline{b}}$

- Very successful Run 1
- LHCb operated at tunable leveled luminosities up to $\sim 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} (\mu = 1.6)$
 - $2 \times$ higher than design value (μ =0.4)
- Recorded ∫Ldt ~ 3 fb⁻¹

2012	8 TeV	2.1 fb ⁻¹
2011	7 TeV	1.1 fb ⁻¹
2010	7 TeV	0.04 fb ⁻¹

LHCb Integrated Luminosity

LHC Run 2

- LHCb should collect ~5 fb⁻¹
- □ 7, 8 TeV \rightarrow 13 (14) TeV nearly doubles $b\overline{b}$ and $c\overline{c}$ production cross section

LHC era			HL-LHC era		
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-23)	Run 4 (2025-28)	Run 5+ (2030+)	
3 fb ⁻¹	8 fb ⁻¹	~25 fb ⁻¹	~50 fb ⁻¹	~100 fb ⁻¹	

LHCb Upgrade

- Upgrade detectors to be able to readout at 40 MHz
- □ Operate detector at luminosities of ~2×10³³ cm⁻²s⁻¹
- Install upgraded LHCb during long shutdown 2 (2019-20)

- Present experimental status:
 - Flavor changing processes are consistent with the CKM mechanism
 - Large sources of flavor symmetry breaking are excluded at the TeV scale
- Why is the LHCb upgrade important:
 - Measurable deviations from the SM are still expected, but should be small
 - Need to go to high precision measurements to probe clean observables
- LHCb upgrade essential to increase statistical precision significantly

CERN-LHCC-2011-001

CERN-LHCC-2012-007

LHCb Trigger

- Current limitation: front-end readout time 900 ns → 1.1 MHz maximum L0 trigger rate
- L0 event yields saturate for hadronic channels

 HLT: full software trigger running on processors farm

Trigger Upgrade

CERN-LHCC-2014-016

- Remove L0 Trigger
- Replace all front-end and back-end for 40 MHz full read-out to CPU farm
- Implement a fast HLT based on full topology
- Final output bandwidth at >20 kHz
- Ultimate trigger flexibility to adjust to physics scene

- 40 MHz readout rate
- Full software trigger,20 kHz output rate
- Efficient and selective use of all detectors information
- Low Level Trigger (LLT) foreseen in early stage
- LLT output rate increases as trigger farms grows

40 MHz read-out architecture

- Objective:
 - Upgrade all sub-systems front-ends to 40 MHz
 - Adapt sub-systems to increased occupancies due to higher luminosity
 - Keep excellent performance of sub-systems with 5 times higher luminosity
- Detectors
 - Vertex Locator (VELO)
 - Tracking system
 - Upstream tracker + Fiber tracker
 - Particle Identification (PID)
 - RICH + Calorimeters + Muon

LHCb Detectors

Vertex Locator Upgrade

CERN-LHCC-2014-016

Current VELO

- Two retractable halves
- 5.5 mm from beam when closed
- 30 mm during injection
- Operates in secondary vacuum
- 300 μm Al-foils separate detector from beam
- $21 \text{ R}/\Phi$ modules per half
- Silicon micro-strip sensors
- Pitch 38-101 μm

- Upgrade challenge:
- Withstand increased radiation (highly non-uniform up to 8×10¹⁵ n_{eq}/cm² in 10 years)
- Handle high data volume
- Keep (improve) current performance
 - Lower materiel budget
 - Enlarge acceptance
- Move closer to the beam
 - Reduce inner aperture from 5.5 mm to 3.5 mm

tracks/chip/event at $L=2.10^{33}$ cm⁻²s⁻¹

VELO Upgrade (2)

- Technical choices:
 - 55×55 µm² pixel sensors with micro channel CO2 cooling
 - 40 MHz VELOPIX
 (evolution of TIMEPIX 3, Medipix)
 - 130 nm CMOS to sustain
 ~400 MRad in 10 years
 - Replace RF-foil between detector and beam vacuum
 - Reduce thickness from 300 μm to $\leq 250 \mu m$

- Better impact parameter resolution due to reduced material budget
- Reduced ghost rate
- Improved efficiency over p_T , ϕ , η

LHC **VELO Upgrade Performance**

current VELO Upgrade VELO

P_{3D} resolution

50

 η

Tracker Upgrade

CERN-LHCC-2014-001

Present tracking system

- Three subsystems: Trigger Tracker, Inner Tracker, Outer Tracker
- Different technologies: silicon strips for TT and IT, straw tubes for OT
- Dipolar magnetic field of 4 Tm provides excellent mass resolution
- World's best mass measurements [PLB 708 (2012) 241]

Upstream Tracker (UT)

Three X-U-V-Y stations

- **Tracker Performance**
- Full η coverage with a single technology
- Improved tracking performance at upgrade luminosity with Fiber Tracker
- Ghost rate significantly reduced using Upstream Tracker information

24

Particle ID Upgrade

CERN-LHCC-2013-022

RICH Particle ID

 Efficient particle ID of π, K, p essential for selecting rare beauty and charm decays

Current RICH

 Particles produce Cherenkov light rings on an array of Hybrid Photo-Detectors located outside the acceptance

RICH Upgrade

- Adapt to higher luminosity
 - Aerogel radiator removed
 - RICH1 optics modified to spread out Cherenkov rings
- 40 MHz readout \rightarrow replace HPDs
 - □ 64 ch. multi-anode PMTs
 - 40 MHz Front-End: CLARO chip

RICH Upgrade Performance

Calorimeters and Muon

Calorimeters

- □ 4 subsystems: PS, SPD, ECAL, **HCAL**
- □ Scintillating tiles + lead (ECAL) or iron (HCAL)
- PMT readout
- Muon System
 - □ 5 stations, 1368 Multi-Wire Proportional Chambers + 12 GEM chambers
 - □ High muon detection efficiency $(\sim 97\%)$ with low misID $(\sim 2\%)$ pions identified as muon)

Calorimeter Upgrade

- Pre-shower and SPD removed (no more L0 calorimeter trigger)
- ECAL expected to be fine up to 20 fb⁻¹, inner ECAL cells could be replaced at LS3, HCAL OK up to 50 fb⁻¹
- Lowered PMT gains to guarantee extended operation at 2x10³³ cm⁻²s⁻¹
- New front-end electronics: ICECAL
- New back-end electronics

- Muon detector front-end CARIOCA already operating at 40 MHz
- New Off-DEtector board for efficient readout via PCIe40 common readout boards
- Remove M1
 - No L0 muon trigger
 - Very high occupancies
- Additional shielding behind HCAL under study to reduce rate in inner regions of M2

- Thanks to its excellent performance LHCb is producing world best measurements in the b- and c-quark sector
- The Upgraded LHCb trigger-less read-out scheme will allow to read the whole detector at 40 MHz and collect 5 fb⁻¹/year, with a leveled luminosity of 2 x 10³³ cm⁻²s⁻¹
- The LHCb upgrade is mandatory to reach experimental precisions in the order of the theoretical uncertainties
- The LHCb Upgrade is fully approved
 Installation is foreseen during LS2 (2019-2020)

Extra Slides

LHCb upgrade physics reach

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o\mu^+\mu^-)$	1.5×10^{-9} [2]	$0.5 imes 10^{-9}$	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	$0.07 imes 10^{-3}$	—
$C\!P$ violation	$\Delta A_{C\!P}$	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	—

Getting close to the theoretical uncertainties