

Roma, Set 2015

Il tracciatore interno a stato solido per l'upgrade di ALICE

Pasquale Di Nezza

per conto della Collaborazione ALICE

ALICE: studio e caratterizzazione del QGP

Lo spettrometro ALICE (A Large Ion Collider Experiment) è stato progettato per studiare la QCD in condizioni estreme di temperatura e densità mai raggiunte in precedenza

Studio del Quark Gluon Plasma usando collisioni ultrarelativistiche di AA, pA e pp

Per accedere ai <u>nuovi scenari</u> nella fisica del QGP occorre effettuare: -misure di precisione con sonde rare -avere la capacità di effettuare misure da bassi ad alti impulsi trasversi -analisi multidimensionali: centralità, piano di reazione, rapidità, flusso per heavy flavor e quarkonia a basso impulso

ALICE: strategia dell'upgrade

Richieste fondamentali: luminosità (statistica) e misure di precisione

- Target per il programma di upgrade (LHC Run3+Run4):
 - Pb-Pb luminosità > 10 nb⁻¹ → 8x10¹⁰ eventi
- I nuovi detector, i nuovi readout ed i nuovi sistemi di acquisizione online porteranno a:
 - readout Pb-Pb di 50 kHz (L=6x10²⁷ cm⁻²s⁻¹) con MB trigger (attualmente il rate è di 500 Hz)
- Guadagno di un fattore 100 sul programma LHC Run1+Run2
- Importante miglioramento nella determinazione dei vertici (primario +secondari) e sulla ricostruzione delle tracce a basso p_T

II nuovo Inner Tracking System (ITS) Lol e TDR approvati by LHCC

CERN-LHCC-2013-24

lournal of Physics 0

3

ALICE: l'attuale spettrometro

ITS: obiettivi dell'upgrade rispetto all'attuale setup

- Miglioramento della risoluzione del parametro d'impatto di un fattore 3
 - ricostruzione più vicina all'IP: 39 \rightarrow 23 mm (beam pipe: 29 mm \rightarrow 18.2 mm)
 - riduzione X/X₀ /piano: $1.14\% \rightarrow 0.3\%$
 - riduzione del pixel size: 50 x 425 μ m² \rightarrow 30 x 30 μ m²
- Miglioramento dell'efficienza di ricostruzione e risoluzione a bassi p₁:
 - aumento della granularità: 6→7 piani
 - omogeneità: pixel, silicon drift e strips \rightarrow pixels
- Fast readout
 - PbPb: $O(kHz) \rightarrow >100 kHz$
 - pp O(10⁵) Hz
- Manutenzione facilitata
 - sub-detector completamente estraibile nelle pause invernali per sostituire eventuali componenti non funzionanti

Layout del nuovo ITS

7 piani a geometria cilindrica basata su Monolitich Active Pixel Sensors (MAPS)

Copertura radiale 23-405 mm Copertura |η|<1.22 (>90% ptc) z=(290, 900, 1500) mm

3 piani Inner Barrel (0.3% X/X₀/piano) 4 piani Outer Barrel (0.8% X/X₀/piano)

Layout del nuovo ITS

Inner Barrel

Peso totale struttura 1.5 grammi

Inner Barrel: prototipo full-scale

Outer Barrel

Outer Barrel Stave

Lunghezza max 1500 mm Peso totale struttura ~30 grammi 10

ITS Pixel Chip – la scelta tecnologica

Pixel MAPS

Monolithic Active Pixel Sensors usando TowerJazz 0.18 µm CMOS Imaging Process

- Strato epitassiale p-type (spessore 20-40 μm) ad alta resistività (1-6 kΩ cm) su di un substrato p-type
- Mini Diodo n-well (diametro 2-3 µm) più piccolo del pixel di ~100 → bassa capacità
- Applicazione al substrato di una tensione bias inversa che viene usata per aumentare le zone di depletion intorno all'n-well
- Il deep PWELL scherma l'NWELL del transistor PMOS permettendo il pieno funzionamento CMOS all'interno dell'area sensibile (low-power read-out)₁₁

Parameter	Inner Barrel	Outer Barrel		
Silicon thickness	50 μm			
Spatial resolution	5 μm	10 µm		
chip dimensions	15 mm x 30 mm			
Power density	< 300 mW/cm ²	< 100 mW/cm ²		
Event time resolution	< 30 µs			
Detection efficiency	> 99%			
Fake hit rate	< 10 ⁻⁵ per readout frame			
TID radiation hardness (*)	2700 krad	100 krad		
NIEL radiation hardness (*)	1.7x10 ¹³ 1MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} / cm ²		

(*) 10 x dose di radiazioni stimata sul programma approvato di presa dati di 6 yr

ITS Pixel Chip – due possibili architetture

Pixel pitch Risoluzione temporale Potenza consumata

28 x 28 μm² <2 μs 39 mW/cm²

Pixel pitch Risoluzione temporale Potenza consumata

36 x 64 μm² ~20 μs 97 mW/cm²

Caratterizzazione del pALPIDE

Intensa campagna di test

- PS: 5-7 Gev π⁻
- SPS: 120 Gev π⁻
- PAL (Korea): 60 MeV e⁻
- BTF (Frascati): 450 MeV e⁻
- DESY: 5.8 Gev e⁺

Caratterizzazione di oltre 200 parametri

Telescopio a 7 piani basato su chip ALPIDE-1 e 2

 $\lambda_{fake} << 10^{-5}$ / event/pixel ed ϵ_{det} >99.5% su un ampio range di soglia

Chip di 50 μ m di spessore: 3 non irradiati e 3 irradiati con neutroni a 10¹³ 1MeV n_{eq}/cm² \rightarrow eccellente performance anche dopo l'irraggiamento

Risoluzione spaziale e cluster size

Risoluzione spaziale (incluso errore di tracciamento $\sim 3 \mu m$) < 5 μm

Chip di 50 μ m di spessore: 3 non irradiati e 3 irradiati con neutroni a 10¹³ 1MeV n_{eq}/cm² \rightarrow eccellente performance anche dopo l'irraggiamento

Risoluzione spaziale (incluso errore di tracciamento $\sim 3 \mu m$) < 5 μm

Chip di 50 μ m di spessore: 3 non irradiati e 3 irradiati con neutroni a 10¹³ 1MeV n_{eq}/cm² \rightarrow eccellente performance anche dopo l'irraggiamento

Interconnessione del pixel chip con il Flexible Printed Circuit (FPC)

Interconnessione del pixel chip con il Flexible Printed Circuit

- Saldatura di una sfera Sn/Ag (96.5/3.5), diametro 200 μm (fusione 227 °C) in vuoto (<10⁻¹ mbar)
- Laser diodo IR, 976 nm, 25 W, 50 μm distanza focale, 250 μm dimensioni dello beam spot
- La potenza del laser è modulata da un pirometro. Un preciso profilo in T assicura una limitazione nel calore trasferito
- Nessuna colla, la saldatura provvede al contatto elettrico ed alla connessione meccanica

ITS – Performance del detector

Fondamentale miglioramento della risoluzione (sx) e della efficienza di traccia (dx) dall'attuale al nuovo ITS

Esempio: $D^0 \rightarrow K^- p^+$

Altri canali notevoli

(µn)	10 ³	z coordinate			$Current, 0.1 nb^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
* vertex	-	-	-	Observable	$p_{ m T}^{ m min} \ ({ m GeV}/c)$	statistical uncertainty	$p_{ m T}^{ m min} \ ({ m GeV}/c)$	statistical uncertainty
,× Ч	-	- 	1		Heavy Flavour			
$\overset{\circ}{D}$	10 ²		* '	D meson R_{AA}	1	10%	0	0.3%
tion	F	-		$D_s meson R_{AA}$	4	15%	< 2	3%
olut	E	•	-	D meson from B R_{AA}	3	30~%	2	1%
res	F	· · · · · · · · · · · · · · · · · · ·		${ m J}/\psi$ from B $R_{ m AA}$	1.5	15% (p_T-int.)	1	5%
Z		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B^+ yield	not a	accessible	3	10%	
			$\Lambda_{ m c} R_{ m AA}$	not a	accessible	2	15%	
	105		$\Lambda_{ m c}/{ m D}^0$ ratio	not a	accessible	2	15%	
			$\Lambda_{ m b}$ yield	not a	accessible	7	20%	
_	10 ³			D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
(m				$\mathrm{D_s\ meson}\ v_2\ (v_2=0.2)$	not a	accessible	< 2	8%
i) Xe				D from B $v_2 (v_2 = 0.05)$	not a	accessible	2	8%
erte				${ m J}/\psi { m from}{ m B}v_2(v_2=0.05)$	not a	accessible	1	60 %
ר לי		Opgrade		$\Lambda_{ m c} \; v_2 \; (v_2=0.15)$	not a	accessible	3	20%
¥ ↑			- - - + ⁻⁺		Dielectro	ns		
۵	10 ²		•	Temperature (intermediate mass)	not a	accessible		10%
tior		- • • <u>-</u>		Elliptic flow $(v_2 = 0.1)$	not a	accessible		10%
solu				Low-mass spectral function	not a	accessible	0.3	20%
x re	-		-		Hypernuc	lei		
	10			$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%
	101	10 ⁻¹ 1	10 p _T D ⁰ (GeV/c)					

Responsabilità per la produzione di Moduli e Stave

Responsabilità di Coordinamento Internazionale

INFN

Responsabilità INFN

Sezione/Laboratorio	Principali Responsabilità	
Bari	 Modulo OB: Procedura Assemblaggio, Modulo 0, Produzione Sistema di Test per Moduli e Stave Power Supply System 	
Cagliari	 Architettura del chip (Priority encoder & R/O Interface) Sistema di test per Pixel Chip 	
Catania	• Test Elettrici degli FPC per l'OB (in collaborazione con Trieste)	
LNF+Roma	 Produzione Stave OB LNF Beam Test Facility 	
Padova	• Integrazione OB: End-wheels, Conical Structural Shell, Integrazione Half- Layer e Half-barrel	
Torino+Alessandria	 PLL & DTU del Pixel Chip Progettazione del FPC Stave OB: Procedura di Assemblaggio, Stave 0, Produzione 	
Trieste	Produzione e test degli FPC per gli OB	24

Conclusioni

ALICE sostituirà l'attuale tracciatore centrale (ITS) nell'LHC LS2 (2019-2020) con un tracciatore ultrasottile e ad alta risoluzione basato su pixel MAPS

- Miglioramento decisivo nella risoluzione del parametro d'impatto, nella risoluzione dell'impulso e nell'efficienza di ricostruzione
- ✓ Miglioramento del rate di acquisizione di un fattore 100
- Tutto I'R&D è in fase avanzata e mostra i risultati attesi Il primo prototipo ITS (stave) pienamente funzionante è atteso per il 2016

ALICE migliorerà le sue già uniche capacità di misurare gli osservabili fondamentali per lo studio della QCD in condizioni estreme in particolare per merito del PID e della precisione di ricostruzione delle tracce fino a bassi p_T

Pasquale Di Nezza