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Abstract
An over-damped pendulum can be adopted as a mechanical analogue of an
over-damped Josephson junction (JJ). The basic equations leading to the
driving torque versus the time average of the angular frequency are studied.
The mechanical analogue can be used to provide additional insight into the
current–voltage characteristics of over-damped JJs.
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1. Introduction

In 1973 Josephson received the Nobel Prize for having predicted the so called dc and ac
Josephson effects [1] in a superconducting device that was named after him: the Josephson
junction (JJ). A JJ consists of two weakly coupled superconductors. The dynamics of the
superconducting phase difference ϕ across the junction is described by the following
equations [2]:

I I asin , (1 )J φ=

t

e
V b

d

d

2
, (1 )

φ =
ℏ

where I is the current flowing through the junction (IJ being the maximum value that can flow
in the zero-voltage state), ħ= h/2π, h being Planck’s constant, and V is the voltage across the
two superconductors. In the dc Josephson effect a non-dissipative current can be seen to flow
at zero voltage, as it can be shown by setting V= 0 in (1b), so that ϕ= constant. In this way, IJ
represents the maximum value of I flowing in the junction in the zero-voltage state. In the ac
Josephson effect, the voltage across the JJ is kept at a fixed non-zero value V0. Integrating
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both sides of equation (1b) we obtain ϕ(t) = (2e/ħ)V0 t+ϕ0, where ϕ0 is the constant of
integration. Therefore the current I is seen to oscillate at a frequency ωJ= (2e/ħ)V0.
Alternative derivations of equations (1a)–(1b) have been also proposed by Feynman [3] and
by Ohta [4]. In the Feynman model a JJ is described as a weakly coupled two-level quantum
system. Ohta noticed that Feynman model did not include an additional term due to energy
contribution of the external classical circuit biasing the JJ. The latter author therefore
introduced a semi-classical model based on a rigorous quantum derivation to attain full
agreement between equations (1a)–(1b) and the corresponding final equations obtained by
means of his valuable semi-classical analysis.

In order to describe the dynamics of the superconducting phase difference ϕ in an over-
damped JJ, a resistively shunted junction (RSJ) model can be adopted [2]. In this model a
purely superconducting element carrying a current I expressed in terms of ϕ as in
equation (1a) is placed in parallel with a resistor of resistance R, as shown in figure 1. By
injecting a current IB in the system and by invoking charge conservation, we may write:

V

R
I Isin , (2)J Bφ+ =

where V is the voltage across the JJ. By expressing V in terms of ϕ as in equation (1b) and by
introducing the dimensionless quantities i I I/B B J= and tRI2 J

0
τ = π

Φ
we may rewrite equation (2)

as follows:

i
d

d
sin . (3)B

φ
τ

φ+ =

The above equation also represents the dynamics of an over-damped simple pendulum.
Therefore, starting from this analogy [2, 5], we consider the static and dynamic solutions of
equation (3) referred to a simple pendulum with a constant forcing term, trying to grasp some
physical insight from these expressions. Successively, we derive the curve of the driving
torque versus the time average of the angular frequency. Finally, the analogy between the two
systems is utilized to discuss the current-voltage characteristics of over-damped JJs.

2. An over-damped pendulum

Let us consider the pendulum hinged in O and consisting of a massless rod of length l and a
spherical body of mass m, as shown in figure 2. Let us also assume that the sphere of mass m
has radius R. This sphere is moving in a fluid of density ρF, so that it is subject to the
buoyance force of intensity F g ,B

R
F

4

3

3

ρ= π where g is the acceleration due to gravity. In
addition, by assuming validity of Stoke’s law, the sphere is taken to be subject to a viscous
force, opposing its velocity and of intensity F R l R6 ( ) ,S t

d

d
π η= + θ η being the coefficient of

viscosity of the medium. The spherical body is also subject to the tension in the massless rod
of length l and to its weight.

By taking moments about point O, we may write:

I
t

F l R m g l R M t
d

d
( ) * ( ) sin ( ), (4)O S

2

2 0
θ θ= − + − + +

where IO is the moment of inertia, m m* (1 )R

m F
4

3

3

ρ= − π is the effective mass of the sphere,
when buoyancy is taken into account, and M0 is the applied torque. Considering the finite
dimensions of the sphere, the moment of inertia IO can be calculated by means of the parallel
axes theorem [6], so that:
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Figure 1. Resistively shunted model for a Josephson junction. The junction on the left
is described by a parallel connection of a resistor with resistance R and an ideal
Josephson element J. In the latter a current I = IJ sinϕ can flow.

Figure 2. Schematic representation of a pendulum of mass m and length l displaced of
an angle θ with respect to the vertical direction. Under certain conditions, the pendulum
can be considered over-damped. This system realizes a mechanical analogue of an
over-damped Josephson junction.
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By dividing both members of equation (4) by m g l R* ( ),+ by defining tm g

R l R

*

6 ( )
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πη +
as

a new dimensionless time variable, and by setting m ( ) ,M

m g l R0
( )

* ( )
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+
we may write
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We immediately notice that equation (6) is equivalent to equation (3) for very small
values of the pre-factor of the second derivative in equation (6); i.e., for
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In this way, the dynamical equation of an over-damped pendulum becomes formally
equal to equation (3), reading:

m
d

d
sin ( ). (7)0

θ
τ

θ τ+ =

Therefore, the analytic and experimental study of an over-damped pendulum allows us to
derive important properties of an over-damped JJ. Naturally, in performing experimental
studies, one needs to have negligible values of the pre-factor of the second derivative in
equation (6). This can be obtained, for example, by using a fluid with high enough values of
the coefficient of viscosity η. In the following sections we shall consider the forcing term as
constant, obtaining a full analytic solution of the problem.

3. Constant driving moment

Let us take a constant forcing term of the over-damped pendulum in figure 2. In this case we
can obtain analytic solutions for the differential equation (7). We start by noticing that, for
m 1,0 < we obtain two constant solutions, one stable, one unstable, as it can be argued by
means of the phase-plane analysis shown in figure 3. The stable solution is given by

Figure 3. Phase-plane analysis for the over-damped pendulum. The constant forcing
term is m0 = 0.0 (bottom curve), m0 = 0.75 (middle curve), and m0 = 1.50 (top curve).
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m* sin , (8)1
0θ = −

while the unstable solution is at *.θ π θ= − The stability regime changes as the angle crosses
the value ,

2
θ = π as it can be noticed by analysing the sign of the derivative d

d

θ
τ
about these

fixed points. For m 10 = we have an half-stable solution: the pendulum may swirl around O
whenever an arbitrary small positive perturbation arises. We may finally notice that, for
m 1,0 > the function ( )θ θ τ= is monotonically increasing, given that the curves in figure 3
lie above the θ-axis and the derivative d

d

θ
τ
is always positive. In this ‘running state’ we solve

the ordinary differential equation (7) by the method of separation of variables, as done in [2],
by writing:

m

d

sin
, (9)
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where (0).0θ θ= By the substitution x tan ,
2

= θ we can write the integral in (9) as follows:
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where we have completed the square in the denominator. The integral on the right-hand side
of equation (9) can now be solved. By substituting this solution into (9) and by defining

( )tan tan ,m

m m0
1

1 2
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0
2

0
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we may write:
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Figure 4. Normalized time dependence of the angular variable θ of an over-damped
pendulum (full-line curve). The constant forcing term is m0 = 1.5. The top and bottom
dashed lines enclose. the undulatory behaviour of θ, whose oscillations take place about
the middle dashed line.
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By finally extracting ( )θ τ from equation (11), we have:

m

m

m

m
k( ) 2tan
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⎥⎥θ τ τ α π= +

− −
+ +−

where k is an integer. The above expression is represented in figure 4, as obtained from
numerical solution of equation (7) with initial condition 0,0θ = and for m 1.5.0 = We notice
that the numerical solution is easier to report on a graph, given the necessity of combining
different pieces of the solution (12), one for each 2π shift of the angular variable ( ).θ τ We
also notice that this function oscillates within two lines of equation

m( ) 1 ,1,2 0
2

1,2θ τ τ γ= − + where m( ) 1 ,1,2 1,2 0
2

1,2γ θ τ τ= − − 1,2τ being the times at
which the lines are tangent to the oscillating curve ( )θ τ in the interval [0, 2π]. The quantities
1,2τ can be found by a straightforward, but rather cumbersome, calculation. Therefore, the
curves of ( )θ τ are seen to oscillate about a central line m( ) 1 ,A 0

2
Aθ τ τ γ= − + whose

intercept Aγ is the average value of 1γ and .2γ The solution of equation (7) is represented in
figure 5, for various values of the constant forcing term m ,0 along with the central lines ( )Aθ τ
obtained by the procedure described above.

4. Time average of the angular frequency

Let us study the time average d

d

θ
τ

of the angular frequency d

d

θ
τ
as a function of the constant

forcing term m .0 This analysis is important, given that the m0 versus d

d

θ
τ

curves correspond

to the normalized current iB versus average voltage d

d

φ
τ

characteristics of an over-damped JJ.

We may start by considering the function ,d

d

θ
τ

represented in figure 6 for m 1.50 = along

with the value of the slope m 10
2 − of the central line running through the solution as seen

in details in figure 4. This slope corresponds to the average value of the curve in figure 6, as
we shall see below. We notice that this function is periodic with period equal to

Figure 5. Normalized time dependence of the angular variable θ of an over-damped
pendulum (full-line curves) represented together with the central dashed line about
which oscillations take place. The constant forcing terms are as follows: m0 = 1.125
(lower curve), m0 = 1.200 (middle curve), m0 = 1.300 (upper curve).
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T
m

2

1
(13)

0
2

π=
−

as can be formally proven by calculating the derivative with respect to τ of ( )θ τ in
equation (12). The slope of the central line can be written as .

T

2π On the other hand, the time-

averaged value of d

d

θ
τ
can be calculated as follows:

T

T

T T

d

d

1 d

d
d

( ) (0) 2
, (14)

T

0
∫θ

τ
θ
τ

τ θ θ π= = − =

so that it is proven that the average value of the angular frequency curves is m 1 .0
2 − From

equations (13) to (14) we can then argue that

m 1
d

d
. (15)0

2θ
τ

= +

The m0 versus
d

d

θ
τ

curve is represented in figure 7. We soon notice the role played by
the static solution in equation (8). In fact, for m 1,0 < the pendulum is in static equilibrium, so

that 0.d

d
=θ

τ
The same happens in a JJ: when the value of the normalized bias current iB is

less than one, the junction is said to be in the superconducting or zero-voltage state.
Therefore, no current flows in the resistive branch of the RSJ model in figure 1, so that the
curve climbs vertically from 0 to 1 just as shown in figure 7. However, when iB> 1, the
resistive branch is activated and a finite voltage appears across the junction, in the way
described in figure 7. We also notice that the m0 versus d

d

θ
τ

curve presents the oblique

asymptote m .0
d

d
= θ

τ
In fact, for large enough values of m0, this driving moment becomes

predominant with respect to the nonlinear sine term in equation (7), thus justifying the
observed asymptotic behaviour.

Figure 6. Normalized time dependence of the angular frequency (full line) of an over-
damped pendulum subject to a constant forcing equal to m0 = 1.50. Notice that the
curve is periodic and the period is T m2 1 .0

2π= − The dashed line represents the

slope m 10
2 − of the central dashed line of the primitive curve in figure 4 and, at the

same time, the average value of the full-line curve.
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5. The washboard potential

Very useful physics can be finally recovered by writing down the energy balance equation for
the system. We start by noticing that energy is furnished from the externally applied moment
at a rate P M .ext t0

d

d
= θ This energy is in part dissipated because of the presence of the viscous

force F R l R6 ( )S t

d

d
π η= + θ at a rate ( )P R l R6 ( ) ,d t

2 d

d

2
π η= − + θ the minus sign meaning

that energy is flowing out from the system. Therefore, the mechanical energy EM, being the

sum of the kinetic energy ( )IO t

1

2

d

d

2θ and of the potential energy m g l R* ( )(1 cos ),θ+ −
varies in time according to the following energy balance equation:

E

t
P P

d

d
. (16)M

d ext= +

By explicitly writing down all terms, we have:

t
I

t
m g l R M R l R

t

d

d

1

2

d

d
* ( )(1 cos ) 6 ( )

d

d
, (17)O
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⎜ ⎟ ⎜ ⎟
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⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

θ θ θ π η θ+ + − − = − +

where we have taken M0 constant and have included the external forcing term under the
derivative operator on the left-hand side. Of course, we can obtain the dynamical equation (4)
from equation (17) by factoring out the angular frequency. However, we are here interested in
highlighting the role of the forcing term in the system. Therefore, we consider a normalized
effective potential ueff defined as follows:

u
U

m g l R
m

* ( )
1 cos . (18)eff

eff
0θ θ=

+
= − −

Figure 7. Normalized forcing term versus the time average of the angular frequency
(full line) of an over-damped pendulum. Notice that the curve is anchored at null
angular frequency if m 1.0 ⩽ On the other hand, for m 1,0 > the values of the curve
tend towards the asymptote, given by the dashed line, as the abscissa increases.
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This normalized potential, called washboard potential because of its shape, is represented
in figure 8 as a function of the variable θ and for various values of the parameter m0. One
word of comment on the origin of the term ‘washboard potential’ is in order. By looking at
the tilted full-line curve in figure 8, we have the impression to see the board used by our great-
grandmother to wash clothes, before the washing machine came into use. The above repre-
sentation is useful, since it clarifies, once more, the crossover from static to dynamic solutions
of the system. In fact, by looking at figure 8, we first notice that the parameter m0 affects the
degree of tilting and stretching of the washboard potential. This can be seen by starting from
the dashed curve obtained for m0 = 0.0 and by considering the remaining curves obtained for
increasing values of this parameter. In the horizontal washboard all minima fall exactly at 2kπ,
with k integer. The number of minima fitting in the graph shown in figure 8 are three. The
same number of minima, though their abscissa are slightly displaced with respect to the above
specified positions, are still present in the stretched and tilted curve for m0 = 0.75 (full line in
figure 8). Therefore, a point-like body could still be in static equilibrium in the angular
positions corresponding to the minima and given by equation (8) in the interval [0, 2π]. Static
equilibrium is not anymore possible for point-like particles on the washboard potential for
m0 = 1.5 (dotted curve), because of excessive tilting and stretching. This feature can be also
derived analytically from equation (18), by just taking the derivative with respect to θ and by
setting it to zero. Of course, this corresponds to finding the fixed point of the dynamical
equation (7) and brings us to the same results as in section 3.

Figure 8. Normalized effective potential as a function of the angle θ for the following
three values of the parameter m0: 0.0 (dashed line); 0.75 (full line); 1.5 (dotted line).
Notice that the parameter m0 determines the degree of tilting and stretching of the
undulating curves.

Eur. J. Phys. 36 (2015) 055042 R D Luca et al

9



6. Conclusions

The properties of an over-damped JJ have been analysed by means of a mechanical analogue:
an over-damped pendulum. The strict analogy between the dynamical equations of the two
systems [2, 5] has been first reviewed. Being the physical properties of a simple pendulum
more familiar to students, the JJ dynamics in the over-damped limit may be derived by
analogy. Therefore, we have analysed some interesting features of an over-damped JJ by
means of the corresponding physical properties of the over-damped pendulum. As an
example, we have noticed that the current-voltage characteristics of the superconducting
device can be obtained by means of an analytical expression derived for the normalized
driving moment as a function of the time average of the angular frequency. Finally, by
considering the energy balance equation for the system, we have seen that it is possible to
describe the effect of the driving moment on the pendulum through the tilting and stretching
of the washboard potential.

Apart from the analogy between the over-damped JJ and the over-damped pendulum, this
work can be adopted as a lecture for first-year college physics students, in order to integrate
the usual description of the pendulum made by means of the small oscillations approximation.
In addition, starting from a mechanical system devised in such a way that the pre-factor of the
second derivative in equation (6) is negligible, teachers may experiment on the effect of a
constant applied torque on the pendulum, adding to direct observation the simple comment
that similar response is expected in an over-damped JJ. In the future, experimental work based
on the present analysis will be performed, after a careful fabrication of the mechanical system.
Extension of the present analysis to non-constant applied torque will also be sought.
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