

Specifications of a computed tomography dedicated to the breast with synchrotron radiation.

Antonio Sarno

on behalf of the SYRMA-CT Collaboration Università Federico II & INFN Sez. Napoli

SYRMA-CT setup

Project features

High resolution single photon counting X-ray detector

- 650 µm CdTe, hexagonal pixel
 60-mm pitch
- Active Area $250 \times 25 \text{ mm}^2$
- Energy range 1-100 keV

Project features

Propagation-based phase contrast imaging

Breast specimen – 5-mm thickPhase CT sliceMammogramVoxel size = $(120 \ \mu m)^3$ Pixel size = $(100 \ \mu m)^2$

Edge Spread Function and Line Spread Function

6

Presampled PSF on W wire in attenuation imaging

MTF curves

MTF curves over PMMA edge: attenuation imaging

Contrast to Noise Ratio

Microcalcifications visibility Voxel size = $60x60x120 \ \mu m^3$; air kerma = 10mGy

Conclusions

Synchrotron radiation phase contrast CT of the breast

- Spatial resolution up to 7 mm⁻¹ (phase contrast) or 2 mm⁻¹ (phase retrieval);
- CNR one order of magnitude greater in phase imaging than in phase contrast imaging;
- Microcalcifications down to 0.13 mm detectable both in phase and in phase contrast imaging.

Thanks for your attention

