Higgs Pair Production: Choosing Benchmarks with Cluster Analysis

M. Dall'Osso, T. Dorigo, F. Goertz, <u>C. A. Gottardo</u> A. Oliveira, M. Tosi

101° Congresso SIF, 21/9/2015, Roma

Higgs Pair Production

Looking at the Higgs Lagrangian

$$\mathcal{L}_h = \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{2} m_h^2 h^2 - \lambda v h^3 - \frac{\lambda}{4} h^4$$

we spot a parameter predicted by the SM but not experimentally constrained: the trilinear coupling λ . To probe λ we need to study double-Higgs production, realized in hadronic colliders through ggF:

Very low production cross section according to SM:

$$\sigma_{hh}(8TeV)^* = 9.96fb \pm 10\%$$

 $\sigma_{hh}(13TeV)^* = 34.3fb \pm 10\%$

* \sqrt{s} in pp collisons

Beyond Standard Model

New physics could constribute to the double Higgs production.

BSM effective theory:

$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{\lambda} \lambda_{SM} v h^{3} - \frac{m_{t}}{v} (v + \kappa_{t} h + \frac{c_{2}}{v} h h) (\bar{t}_{L} t_{R} + h.c.) + \frac{1}{4} \frac{\alpha_{s}}{3\pi v} (c_{g} h - \frac{c_{2g}}{2v} h h) G^{\mu\nu} G_{\mu\nu}$$

Kλ	anomalous trilinear	$ \kappa_{\lambda} \sim 15$ (κ_{λ} only variation) ⁽²⁾	
Kt	anomalous top Yukawa	$\kappa_t \in [0.5, 2.5]^{(1)}$	5D parameter space
C 2	tthh interaction	$ c_2 < 5$ if $\kappa_{\lambda} = 1$ and $\kappa_t \in [0.5, 2.5]^{(2)}$	
Cg	h-gluon contact int.	$c_g \sim O(1)$ theoretical assumption	
C _{2g}	hh-gg contact int.	$c_{2g} \sim O(1)$ theoretical assumption	

(1) from single h RUN I study (CMS-PAS-HIG-14-009, ATLAS-CONF-2015-007)

(2) from hh \rightarrow $\gamma\gamma bb$ 8 TeV analysis by ATLAS and CMS, and hh \rightarrow bbbb 8 TeV ATLAS

Deviations from SM values or new couplings could **enhance the cross section** up to >100 times but also **change drastically the kinematics** requiring a custom analysis for each set of values.

Setup

Aim Cluster together parameter space regions that share the same kinematics, making the probing of the whole parameter space possible with a few analyses.

Variables choice

The bosons are back-to-back in ϕ (no ISR), so, disregarding of the particular azimuthal angle, we just need 3 variables to describe the system

$p_T\,, \ p_{z,1}, \ p_{z,2}$

Actually the boost along the z axis comes from the parton distribution functions we do not want to account for. So we study the process in the center of mass frame with just two variables

 m_{hh} , $cos\theta^*$

Parameter space point \rightarrow Monte Carlo sample \rightarrow 2D shape

Binning sufficiently populated 50 (m_{hh}) x 5 ($lcos\theta^*l$) bins.

 $\begin{array}{ll} m_{hh} & [0,\,1500\;GeV] & 30\;GeV\;wide-bin \\ Icos\theta^*I \; [0,1] & 0.2\;wide-bin. \end{array}$

Test Statistic I

Test Statistic (TS)

Several possible choices: Kolmorov-Smirnov, Anderson-Darling, Zach-Aslan energy test.... Final choice: log likelihood function based on Poisson counts.

The maximum likelihood of sample 1 and 2 sharing the same parent distribution is given, for the i-th bin by

$$p\left(n_{i,1}, n_{i,2} \mid \hat{\mu}_i = \frac{n_{i,1} + n_{i,2}}{2}\right) = e^{-2\mu_i} \frac{\mu_i^{n_{i,1} + n_{i,2}}}{n_{i,1}! n_{i,2}!}$$

 $\hat{\mu}_i$ is chosen as the minimum-variance unbiased estimator The TS is defined as the log-likelihood:

$$TS = log(\mathcal{L}_{12}) = \sum_{i=1}^{N_{bin}^{tot}} \left[-2\mu_i + (n_{i,1} + n_{i,2})log\mu_i - log(n_{i,1}!) - log(n_{i,2}!)\right]$$

Compared to Z.A. test it was proved to be more sensible to small scale features of the distributions under test.

Test Statistic II

Steps:

- 1) Identify each sample as one element cluster
- 2) define cluster-to-cluster similarity as $TS^{min} = min(TS_{ij})$ where *i* runs on first cluster elements and *j* on the second one
- 3) merge the pair of clusters with highest *TS^{min}*
- 4) repeat until the desired numer of clusters
 N_{clus} is reached
- 5) identify the benchmark *k* of each cluster as the one with the highest

 $TS_k^{min} = min_i(TS_{ki})$

where *i* runs on the cluster elements.

Application of the algorithm

1483 Monte Carlo initial samples (20k events LHE, 13 TeV, MadGraph5 + aMC@NLO)

- corresponding to different points in the par. space,
- near local minima of cross section where maximum kinematical variability shows up
- no generation cut

cross section isolines and TS variation speed (interpolation)

13 benchmarks

Best N_{clus} evaluated a posteriori equals 13 \leftrightarrow homogeneity - numerosity trade-off

Clusters m_{hh} distributions

Clusters |cosθ*| distributions

Clusters p_T distribution

Clusters map in $\kappa_t \times \kappa_\lambda$ plane

samples in κ_t and κ_λ plane, one color per cluster.

- ▼ p⊤ peak < 50 GeV
- p⊤ peak ~ 100 GeV
- ▲ p⊤ peak > 150 GeV
- double peak in m_{hh}

great variability around SM point which is a cross section minimum

Conclusions

- Higgs pair production is under study by ATLAS and CMS collaboration [CMS][ATLAS]
- An EFT parametrization of the gg→hh process has been provided and brings to a five dimensional parameter space
- The parameter space is wide and only a limited number of analyses can be performed
- A clustering tecnique has been developed and lead to a subdivision of the parameter space into 13 regions
- Good uniformity of kinematical distributions in each cluster validates the method
- This uniformity has also been checked at the reco level at least for the γγbb final state at 8 TeV (link)

Work documented in <a>arXiv:1507.02245