Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Raffaele Del Grande*

Università degli Studi di Roma TOR VERGATA INFN, Laboratori Nazionali di Frascati

101° Congresso Nazionale SIF ROMA, 21-25 Settembre 2015

INFN

Istituto Nazionale di Fisica Nucleare

*raffaele.delgrande@lnf.infn.it

Ordinary matter

1st generation of foundamental particles

WHAT ABOUT THE OTHER PARTICLES?

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Stangeness in Neutron Stars?

The largest well-measured mass is 1.97±0.04 Mo for PSR J1614-2230. (Annu. Rev. Nucl. Part. Sci. 2012. 62; 485-515)

Some models predict hadrons with $S \neq 0$ inside Neutron Stars!!!

Microscopic approach to hyperonic matter EOS

input

2BF: nucleon-nucleon (NN), nucleon-hyperon (NY), hyperon-hyperon (YY)

e.g. Nijmegen, Julich models

3BF: NNN, NNY, NYY, YYY

Hyperonic sector: experimental data

YN scattering (very few data)

2. Hypernuclei

K-N potential U_{KN} \rightarrow how deep can an antikaon be bound in a nucleus?

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

AMADEUS: Anti-kaonic Matter At Daone: Experiments with Unrevealing Spettrocopy

Unprecedented studies of the **low-energy charged kaons interactions in nuclear matter**: solid and gaseous targets (d, ³He, ⁴He, ⁸Be, ¹²C ...) in order to obtain unique quality information about:

- Interaction of K⁻ with one and more nucleons (single and multi nucleon K⁻ absorption)
- possible existence of kaonic nuclear clusters (deeply bound kaonic nuclear states DBKNS) * search in the Λp, Σp, Λd, and Λt final channels
- Low-energy charged kaon cross sections for momenta lower than 100 MeV/c
- Controversial nature of the Λ(1405)
- Y-N potential → extremely poor experimental information from scattering data
- * DBKNS: Ap channel Kpp bound by about 60-90 MeV (in a normal nucleus the BE/nucleon is about 6-7 MeV) a role in neutron stars?

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

AMADEUS & DAΦNE

DAΦNE

Double ring e^+e^- collider working in C. M. energy of ϕ , producing $\approx 600 \text{ K}^+\text{K}^-/\text{s}$ $\phi \rightarrow \text{K}^+\text{K}^-$ (BR = (49.2 ± 0.6)%)

- low momentum Kaons
 ≈ 127 Mev/c
- back to back K⁺K⁻ topology

AMADEUS STEP 0: KLOE 2004-2005 data

• 96% acceptance,

- optimized in the energy range of all charged particles involved
- good performance in detecting photons (and neutrons checked by kloNe group (M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)))

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Low-energy K⁻ hadronic interactions studies with KLOE, why?

Possibility to use KLOE materials as an active target
DC wall (750 μm c. f. , 150 μm Al foil);
DC gas (90% He, 10% C₄H₁₀).

Advantage: excellent resolution .. $\sigma_{p\Lambda} = 0.49 \pm 0.01$ MeV/c in DC gas $\sigma_{m\gamma\gamma} = 18.3 \pm 0.6$ MeV/c²

Disadvantage: Not dedicated target \rightarrow different nuclei contamination \rightarrow complex interpretation.

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Search for the K⁻pp bound state through the Λp correlation study

Acceptance study with phase space $K^- + 4He \rightarrow \Lambda p n n$ MC simulation

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Λp correlation study **Fit 3**

Fit 3D (P_A , P_p , θ_{Ap})

conversion after 2NA: more energetic

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Ap correlation study $Fit 3D (P_A, P_P, \theta_{AP})$

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Conclusions & Future Perspectives

- Ap analysis to be finalized:

*No clear peak structure excludes the possibility of a high formation rate and/or narrow width resonance.
*The signal from the decay of a K⁻pp bound state is masked by the Σ/Λ conversion process.
*Clear evidence of 3NA in Ap channel.

- Try to extract $\sigma_{_{YN \rightarrow YN}}$ to give quantitative informations about $U_{_{YN}}$

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

THANKS

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Single & multi-nucleon K⁻ absorption. Kaonic nuclear cluster investigation through Λp , Λd , Λt and $\Sigma^0 p$ correlation.

• Single nucleon absorption (1NA):

 $\mathbf{K}^{-} + \mathbf{p}^{-} \rightarrow \Lambda + \pi^{0}$

Three nucleons absorption (3NA):

 $\mathbf{K}^{-} + \mathbf{ppn'} \rightarrow \Lambda + \mathbf{d}$

Double nucleons absorption (2NA):

 $\mathbf{K}^{-} + \mathbf{p} \mathbf{p}' \rightarrow \Lambda + \mathbf{p}$

 $K^- + 'pp' \rightarrow \Sigma^0 + p$

• Four nucleons absorption (4NA):

 \mathbf{K}^{-} + 'ppnn' $\rightarrow \Lambda$ + t

Different theoretical approaches:

- Few-body calculations solving Faddeev equations
- Variational calculations with phenomenological KN potential
- KN effective interactions based on Chiral SU(3) dynamics

		Theoretical prediction	B.E (MeV)	Γ (MeV)
K ⁻ pp bound state	PRC76, 045201 (2002)	T. Yamazaki and Y. Akaishi	48	61
	arXiv:0512037v2[nucl-th]	A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58
	PRC76, 044004 (2007)	N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50-70	~100
	PRC76, 035203 (2007)	Y. Ikeda and T. Sato	60-95	45-80
	NPA804, 197 (2008)	A. Dote, T. Hyodo, W. Weise	20±3	40~70
	PRC80, 045207 (2009)	S. Wycech and A. M. Green	56.5-78	39-60
	PRL B712, 132-137 (2012)	Barnea et al.	15.7	41.2

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

Events reconstruction in KLOE

N - higher mass particle p,d or t

PDG: $M_{\Lambda} = 1115.683 \pm 0.006 \text{ MeV}/c^2$

Particle identification via:

- dE/dx information in the DC wires
- Mass by TOF

Low-energy strangeness studies by AMADEUS to understand the Neutron Stars

 Λp events, preliminary fit • 1NA with Σ/Λ conversion: $K^{-}N \rightarrow \Sigma \pi + \Sigma p/\Lambda p$ **FINAL PRODUCED** PARTICLES • 2NA processes: $K^{-}NN \rightarrow \Lambda p$

 $\mathbf{K}^{-}\mathbf{N}\mathbf{N} \to \Sigma^{0} \mathbf{p} + \Sigma^{0} \to \Lambda \gamma$

 $K^{-}NN \rightarrow \Sigma^{0}p + \Sigma p/\Lambda p$ conversion in ⁴He

Pionic 2NA modes: $K^-NN \rightarrow Y\pi N$

 Uncorrelated processes: Simulation based in «spectator» protons from Λd correlated events in ¹²C
 Low-energy strangeness studies by AMADEUS to understand the Neutron Stars
 Raffaele Del Grande