# Studio della produzione di $\Lambda_{\rm c}$ in collisioni pp e p-Pb con ALICE ad LHC



101° Congresso Nazionale della Società Italiana di Fisica Roma, 21-25 settembre 2015





E. Meninno\* INFN e Università degli Studi di Salerno (\*per la collaborazione ALICE)

### SOMMARIO

- Introduzione
- Il rivelatore ALICE
- Studio della produzione di  $\Lambda_{\rm c}$  in ALICE
  - Strategia di analisi
  - Risultati in collisioni pp e p-Pb
- Prospettive future
- Conclusioni



21/09/2015 / Elísa Menínno (Università di Salerno e INFN) per la Collaborazione ALICE



- Quark *charm e beauty:* sono prodotti in processi di *hard scattering* tra *partoni* durante le primissime fasi di una collisione adronica (pp, p-A, A-A).
- In collisioni Pb-Pb, i quark charm e beauty primariamente prodotti, si propagano attraverso il mezzo caldo e denso formatosi nella collisione, interagendo con i suoi costituenti.





- Quark *charm e beauty:* sono prodotti in processi di *hard scattering* tra *partoni* durante le primissime fasi di una collisione adronica (pp, p-A, A-A).
- In collisioni Pb-Pb, i quark charm e beauty primariamente prodotti, si propagano attraverso il mezzo caldo e denso formatosi nella collisione, interagendo con i suoi costituenti.

Il *charm* è una sonda molto potente per studiare il Quark Gluon Plasma (QGP) creatosi nelle collisioni Pb-Pb ad LHC





- Quark *charm e beauty:* sono prodotti in processi di *hard scattering* tra *partoni* durante le primissime fasi di una collisione adronica (pp, p-A, A-A).
- In collisioni Pb-Pb, i quark charm e beauty primariamente prodotti, si propagano attraverso il mezzo caldo e denso formatosi nella collisione, interagendo con i suoi costituenti.

Il charm è una sonda molto potente per studiare il Quark Gluon Plasma (QGP) creatosi nelle collisioni Pb-Pb ad LHC

 Insieme ai mesoni con *charm*, la misura dei barioni con *charm* Λ<sub>c</sub><sup>+</sup> da' luce sui meccanismi di adronizzazione nel QGP.





- Quark *charm e beauty:* sono prodotti in processi di *hard scattering* tra *partoni* durante le primissime fasi di una collisione adronica (pp, p-A, A-A).
- In collisioni Pb-Pb, i quark charm e beauty primariamente prodotti, si propagano attraverso il mezzo caldo e denso formatosi nella collisione, interagendo con i suoi costituenti.

Il charm è una sonda molto potente per studiare il Quark Gluon Plasma (QGP) creatosi nelle collisioni Pb-Pb ad LHC

- Insieme ai mesoni con charm, la misura dei barioni con charm Λ<sub>c</sub><sup>+</sup> da' luce sui meccanismi di adronizzazione nel QGP.
  - La misura della produzione di Λ<sub>c</sub><sup>+</sup>rispetto ai mesoni D in collisioni Pb-Pb permette di studiare il rapporto barioni su mesoni ne settore degli *heavy* quark.







- Misure di  $\Lambda_c^+$  in collisioni pp:
  - Riferimento fondamentale per misure in Pb-Pb
  - Test di complessi modelli teorici (pQCD)
  - Misura fondamentale per la stima della sezione d'urto di produzione di quark charm alle energie di LHC con ALICE in collisioni pp

necessaria in aggiunta a quella dei mesoni D





### • Misure di $\Lambda_c^+$ in collisioni pp:

- Riferimento fondamentale per misure in Pb-Pb
- Test di complessi modelli teorici (pQCD)
- Misura fondamentale per la stima della sezione d'urto di produzione di quark charm alle energie di LHC con ALICE in collisioni pp

sezione d'urto barionica necessaria in aggiunta a quella dei mesoni D

### • Misure di $\Lambda_c^+$ in collisioni p-Pb

- Riferimento per misure in Pb-Pb
- Stima della sezione d'urto di produzione di quark charm
- Studio degli effetti di materia nucleare fredda (CNM) non dovuti alla formazione di QGP (modifica delle funzioni di distribuzione partoniche (PDF), k<sub>T</sub> broadening)





### • Misure di $\Lambda_c^+$ in collisioni pp:

- Riferimento fondamentale per misure in Pb-Pb
- Test di complessi modelli teorici (pQCD)
- Misura fondamentale per la stima della sezione d'urto di produzione di quark charm alle energie di LHC con ALICE in collisioni pp

sezione d'urto barionica necessaria in aggiunta a quella dei mesoni D

### • Misure di $\Lambda_c^+$ in collisioni p-Pb

- Riferimento per misure in Pb-Pb
- Stima della sezione d'urto di produzione di quark charm
- Studio degli effetti di materia nucleare fredda (CNM) non dovuti alla formazione di QGP (modifica delle funzioni di distribuzione partoniche (PDF), k<sub>T</sub> broadening)

#### • Canali di decadimento studiati in ALICE:

| $\Lambda_c^+ \rightarrow p K^- \pi^+ e$ coniugato in carica                       |                                                                                          |                             |                 |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|-----------------|
| non risonanti:<br>risonanti: p K*(892):<br>Λ(1232) <sup>++</sup> K <sup>-</sup> : | B.R.=( <u>2.8 ± 0.8</u> )%<br>B.R.=( <u>1.6 ± 0.5</u> )%<br>B.R.=( <u>0.86 ± 0.30</u> )% | B.R. tot=( <mark>5.0</mark> | <u>± 1.3</u> )% |
| Λ(1520) π⁺ :                                                                      | B.R.=( <u>1.8 ± 0.6</u> )%                                                               |                             |                 |





### • Misure di $\Lambda_c^+$ in collisioni pp:

- Riferimento fondamentale per misure in Pb-Pb
- Test di complessi modelli teorici (pQCD)
- Misura fondamentale per la stima della sezione d'urto di produzione di quark charm alle energie di LHC con ALICE in collisioni pp

sezione d'urto barionica necessaria in aggiunta a quella dei mesoni D

### • Misure di $\Lambda_c^+$ in collisioni p-Pb

- Riferimento per misure in Pb-Pb
- Stima della sezione d'urto di produzione di quark charm
- Studio degli effetti di materia nucleare fredda (CNM) non dovuti alla formazione di QGP (modifica delle funzioni di distribuzione partoniche (PDF), k<sub>T</sub> broadening)

#### Canali di decadimento studiati in ALICE:



21/09/2015 / Elísa Menínno (Uníversítà dí Salerno e INFN) per la Collaborazione ALICE

### Il rivelatore ALICE



ALICE

21/09/2015 / Elísa Menínno (Università di Salerno e INFN) per la Collaborazione ALICE

### Il rivelatore ALICE

• Misure di open charm e beauty nel **barrel centrale** di ALICE



21/09/2015 / Elísa Menínno (Università di Salerno e INFN) per la Collaborazione ALICE

### Il rivelatore ALICE

• Misure di  $\Lambda_c^+$  nel *barrel* centrale di ALICE



21/09/2015 / Elísa Menínno (Uníversítà dí Salerno e INFN) per la Collaborazione ALICE

• Misure di  $\Lambda_c^+$  nel **barrel centrale** di ALICE



ALIC

21/09/2015 / Elísa Menínno (Uníversità di Salerno e INFN) per la Collaborazione ALICE

• Misure di  $\Lambda_c^+$  nel **barrel centrale** di ALICE



• Misure di  $\Lambda_c^+$  nel *barrel* centrale di ALICE



21/09/2015 / Elísa Menínno (Università di Salerno e INFN) per la Collaborazione ALICE

• Misure di  $\Lambda_c^+$  nel *barrel* centrale di ALICE



21/09/2015 / Elísa Menínno (Uníversítà dí Salerno e INFN) per la Collaborazione ALICE

# Strategia di analisi di $\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$

 Le candidate K<sup>0</sup><sub>s</sub> sono ricostruite da coppie di tracce (selezionate in base a tagli topologici) con carica opposta, che formano un vertice dislocato dal vertice di interazione





## Strategia di analisi di $\Lambda_c^+ \rightarrow pK_s^0$

 Le candidate K<sup>0</sup><sub>s</sub> sono ricostruite da coppie di tracce (selezionate in base a tagli topologici) con carica opposta, che formano un vertice dislocato dal vertice di interazione



Un chiaro segnale per i  $K_{s}^{0}$  nei plot di massa invariante  $m_{inv}(\pi^{+},\pi^{-})$  limita notevolmente il fondo combinatorio, nonostante il basso B.R.

K<sup>0</sup>



# Strategia di analisi di $\Lambda_c^+ \rightarrow pK_s^0$

 Le candidate K<sup>0</sup><sub>s</sub> sono ricostruite da coppie di tracce (selezionate in base a tagli topologici) con carica opposta, che formano un vertice dislocato dal vertice di interazione



Un chiaro segnale per i  $K_{s}^{0}$  nei plot di massa invariante  $m_{inv}(\pi^{+},\pi^{-})$  limita notevolmente il fondo combinatorio, nonostante il basso B.R.

K<sub>0</sub>

• Una terza carica, identificata come protone, è combinata con un  $K_{s}^{0}$  per formare una candidata  $\Lambda_{c}^{+}$ 



# Strategia di analisi di $\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$

 L'eccellente Particle Identification (PID) di ALICE è essenziale per selezionare correttamente i protoni

Rivelatori utilizzati:

- TOF (misure di tempo di volo)
- TPC (misure di perdita di energia)

Approccio utilizzato:

Tagli sul numero di sigma
 differenza tra il valore (tempo di volo
 o dE/dx) aspettato e quello misurato,
 in unità di risoluzione del rivelatore





# Strategia di analisi di $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$

 L'eccellente Particle Identification (PID) di ALICE è essenziale per selezionare correttamente i protoni

Rivelatori utilizzati:

- TOF (misure di tempo di volo)
- TPC (misure di perdita di energia)

### Approccio utilizzato:

Tagli sul **numero di sigma** differenza tra il valore (tempo di volo o dE/dx) aspettato e quello misurato, in unità di risoluzione del rivelatore



Applicando questa PID si ottiene una forte soppressione del fondo (di un fattore  $\sim 20$ )





21/09/2015 / Elísa Menínno (Uníversítà di Salerno e INFN) per la Collaborazione ALICE

# Estrazione del segnale di $\Lambda_c^+ \rightarrow pK_s^0$ in collisioni pp



• Chiaro segnale di  $\Lambda_c^+$  in  $p_T$  integrato per  $p_T > 2$  GeV/c



# Estrazione del segnale di $\Lambda_c^+ \rightarrow pK_s^0$ in collisioni pp



3.0 x 10<sup>8</sup> eventi minimum bias analizzati in collisioni pp a  $\sqrt{s}$ = 7 TeV (2010)

Il segnale è fittato con una funzione Gaussiana; il fondo con una funzione polinomiale del secondo ordine.

- Chiaro segnale di  $\Lambda_c^+$  in 4 intervalli di  $p_T$  in [1,5] GeV/c
- Lavoro di ottimizzazione dei tagli in corso, per migliorare l'estrazione del segnale



21/09/2015 / Elísa Menínno (Uníversítà dí Salerno e INFN) per la Collaborazione ALICE

# Estrazione del segnale di $\Lambda_c^+ \rightarrow pK_s^0$ in collisioni p-Pb



1 x 10<sup>8</sup> eventi minimum bias analizzati in collisioni p-Pb a  $\sqrt{s_{\rm NN}}$ = 5.02 TeV (2013)

Il segnale è fittato con una funzione Gaussiana; il fondo con una funzione polinomiale del secondo ordine.

ALI-PERF-97096

• Chiaro segnale di  $\Lambda_c^+$  in  $p_T$  integrato tra 2 e 12 GeV/c



21/09/2015 / Elísa Menínno (Uníversità dí Salerno e INFN) per la Collaborazione ALICE

# Prospettive per future misure di $\Lambda_c$

- Principali obiettivi dell'upgrades dell'ITS e dell'LHC (durante il secondo lungo shutdown-LS2-(2018)) :
  - Migliorare la risoluzione sul parametro di impatto delle tracce di un fattore ~ 3
  - Migliorare l'efficienza di tracciamento e la risoluzione in  $p_{T}$  a basso  $p_{T}$
  - Aumento del rate di presa dati



# Prospettive per future misure di $\Lambda_c$

- Principali obiettivi dell'upgrades dell'ITS e dell'LHC (durante il secondo lungo shutdown-LS2-(2018)) :
  - Migliorare la risoluzione sul parametro di impatto delle tracce di un fattore ~ 3
  - Migliorare l'efficienza di tracciamento e la risoluzione in  $p_{T}$  a basso  $p_{T}$
  - Aumento del rate di presa dati
- Queste nuove caratteristiche di ALICE permetteranno di misurare adroni con charm, come  $\Lambda_c^+$ , anche in collisioni Pb-Pb.



# Prospettive per future misure di $\Lambda_c$

- Principali obiettivi dell'upgrades dell'ITS e dell'LHC (durante il secondo lungo shutdown-LS2-(2018)) :
  - Migliorare la risoluzione sul parametro di impatto delle tracce di un fattore ~ 3
  - Migliorare l'efficienza di tracciamento e la risoluzione in  $p_{T}$  a basso  $p_{T}$
  - Aumento del rate di presa dati
- Queste nuove caratteristiche di ALICE permetteranno di misurare adroni con charm, come  $\Lambda_c^+$ , anche in collisioni Pb-Pb.

La misura del fattore  $R_{AA}$  per la  $\Lambda_c$ , il rapporto barioni/mesoni nel settore del charm, l'anisotropia azimutale saranno accessibili con la luminosità integrata di 10 nb<sup>-1</sup> (target del programma di ALICE dopo l'upgrade)



21/09/2015 / Elísa Menínno (Università di Salerno e INFN) per la Collaborazione ALICE

### Conclusioni

- Misura della produzione di  $\Lambda_c^+$  (e c.c.) interessante in collisioni pp, p-Pb e Pb-Pb con ALICE ad LHC
- Segnale per la  $\Lambda_c^+$  osservato in collisioni pp (2010) e p-Pb (2013), studiando il canale di decadimento  $\Lambda_c^+ \rightarrow pK_s^0$

 $\longrightarrow$  Work in progress per la stima di sezione d'urto di produzione di  $\Lambda_c^+$ 

- Misura difficile perché:
  - B.R. basso (soltanto 0.8 %)
  - piccola lunghezza di decadimento ( ~ 60  $\mu$ m)
- L'attuale setup sperimentale di ALICE non permette di misurare la  $\Lambda_c^+$ in collisioni Pb-Pb, a causa del fondo elevato, ma ci sono buone prospettive per una prima misura con l'upgrade dell'ITS dopo LS2.









### Misure di $\Lambda_{\rm c}$ nel passato



21/09/2015 / Elísa Menínno (Uníversità di Salerno e INFN) per la Collaborazione ALICE

# Ricostruzione di $\Lambda_c^+ \rightarrow pK_s^0 e c. c.$

#### **Costruzione delle candidate K<sup>0</sup>**<sub>s</sub>:

| Quantità                        | Taglio applicato |  |
|---------------------------------|------------------|--|
| Number of TPC cluster           | 70               |  |
| Kink daughter                   | NO               |  |
| $ \eta $                        | <0.8             |  |
| $p_T$ (V0 daughters)            | > 0.2 GeV/c      |  |
| $d_0$ (V0 daughters)            | > 500 μm         |  |
| DCA prong to prong              | < 5mm            |  |
| ho(V0)                          | [2mm;2m]         |  |
| $ d_0(V0) $                     | < 1mm            |  |
| Cosine of pointing angle for V0 | > 0.99           |  |



#### Selezione dei candidati protoni (bachelor):

| Quantità               | Taglio applicato |  |
|------------------------|------------------|--|
| kink                   | NO               |  |
| Number of ITS clusters | 2                |  |
| Number of TPC clusters | 70               |  |
| $ d_0 $                | < 0.5 mm         |  |
| $p_T$                  | > 0.3 GeV/c      |  |

• Per costruire le candiate  $\Lambda_c^+$  accettiamo soltanto candidate  $K_s^0$  con massa invariante  $(\pi^+, \pi^-)$  vicina alla massa nota per i  $K_s^0$  (497.614 MeV/c<sup>2</sup>)





### Ricostruzione di $\Lambda_c^+ \rightarrow pK_s^0 e c. c.$ Ottimizzazione di tagli su variabili topologiche in pp

| $p_T(\Lambda_c)$ | $p_T(p)$ min | $p_T(K^0_S)$ min | $\left m(\pi^+\pi^-)-mig(K^0_Sig) ight $ max | $d_0(p)$ max | $\cos PA(K_S^0)$ |
|------------------|--------------|------------------|----------------------------------------------|--------------|------------------|
| (GeV/c)          | (GeV/c)      | (GeV/c)          | (MeV/ <i>c</i> <sup>2</sup> )                | (cm)         | min              |
| [4;5[            | 0.7          | 0.8              | 0.0080                                       | 0.06         | 0.99             |
| [5;6[            | 0.8          | 1.1              | 0.0090                                       | 0.06         | 0.99             |
| [6;8[            | 0.9          | 1.1              | 0.0100                                       | 0.06         | 0.99             |
| [8;12[           | 0.9          | 1.2              | 0.0110                                       | 0.06         | 0.99             |

Per tutti gli intervalli di  $p_T$ :  $p_T(\pi) > 0.2 \ GeV/c$ 

 $|m(p, \pi) - m(\Lambda)| > 5 \text{ MeV}/c^2$  $|m(\pi, p) - m(\Lambda)| > 5 \text{ MeV}/c^2$  $|m(e, e) - m(\gamma)| > 100 \text{ MeV}/c^2$  Strategia di PID utilizzata in questa analisi:

for p(bachelor) $\leq 1 |n\sigma TPC(bachelor)| < 2$ 

for  $1 \le p(bachelor) < 3 \text{ GeV/c } |n\sigma TOF(bachelor)| < 3$ 

for p(bachelor)  $\geq 3 -2 < n\sigma TOF(bachelor) < 3$ 

