Misure mediante raggi cosmici della risoluzione temporale di SiPM

Francesca Carnesecchi

Dipartimento di Fisica e Astronomia Università degli Studi e INFN, Bologna Centro Fermi, Roma

1

Obiettivo: Studio della risoluzione temporale di SiPM

SiPM S12572-050P Hamamatsu

Perché utilizzare SiPM?

- Range spettrale (λ): 320-900 nm
- Guadagno: 1.25 10⁶
- Tensione di lavoro consigliata (V): 67.6 ± 10.0
- **PDE** ~ 30%
- Basso after pulse
- Basso crosstalk
- Bassa sensibilità a B
- Compattezza

Perché questa misura?

Alcune possibili applicazioni

Conical light quides Scintillator Curved light guides Clear plastic

Design di un contatore del ToF.

ALIO

F

TOF

Calorimetria

DIRC(RICH)

Trigger

PET

photomultiplier 5 mm thick light guide 1 mm thick plastic scintillation counter

Misura della risoluzione temporale mediante un telescopio per RC

SiPM a contatto diretto con lo scintillatore

Scintillatori plastici BC-420 (2x2x3 cm³) a basso autoassorbimento

BC-420 Light output

1000

SiPM accoppiato allo scintillatore tramite fibre

Fibre plastiche WLS BCF-92 da 2 mm di diametro

- Studio delle prestazioni con Fibre di diversa lunghezza:
- 10.2 cm
- 35 cm

Fori di ingresso delle fibre nello scintillatore

SiPM a

contatto diretto

SiPM accoppiato tramite fibre

Elettronica di front end e read out: NINO ASIC & moduli CAMAC

7

Analisi dati

- Tagli sulla carica raccolta e sui tempi dei PM per selezionare i raggi cosmici rispetto al fondo.
- E' stata calcolata la σ della differenza tra i tempi misurati dai due SiPM e corretta per effetto della carica.

Risultati preliminari

*Tensione di alimentazione dei SiPM di 0.5 V sopra il nominale

Stato dell'arte

M. Iori et al., *SiPM application for a detector for UHE neutrinos tested at Sphinx Station*, 33th ICRC, 2013

Scintillatore organico (plastico) 20x20x1.4 cm³ $\sigma = 500 \text{ ps}$

K.Tarunaga et al. , *Evaluation of MPPC photon sensors for the PHOS upgrade in ALICE at CERN*, ATHIC 2014

Scintillatore inorganico (cristallo) 22x22x180 cm³ σ = 500 ps

10

Conclusioni

- Installato un telescopio di raggi cosmici per lo studio della risoluzione temporale di SiPM
- Studiati accoppiamenti tra SiPM e scintillatore plastico sia a contatto che tramite fibre WLS
- Raggiunte risoluzioni temporali tramite fibre di 125 ps
- Raggiunte risoluzioni temporali di 84 ps
- I risultati ottenuti mediante misure con raggi cosmici mostrano, per quanto ci è dato sapere, una novità

BACKUP SLIDES

SiPM S12572-050P Hamamatsu

Scintillatori plastici BC-420

Gli scintillatori plastici utilizzati BC-420 (2x2x3 cm) sono stati realizzati per misure di tempo ultra fast e sono scintillatori a basso autoassorbimento.

Parametri	Valori
Base	Polyvinyltoluene
Lunghezza d'onda di massima emissione (nm)	391
Indice di rifrazione	1.58
Lunghezza di attenuazione (cm)	110
Frazione atomi, H/C	~ 1.1
Costante di tempo (ns)	1.5

Fibre plastiche WLS BCF-92

Parametri

Colore di emissione Picco di emissione (*nm*) Tempo di decadimento (*ns*) Materiale del core Indice di rifrazione del core Materiale cladding Indice di rifrazione del cladding No. di atomi di *H* per cc (core) No. di atomi di *C* per cc (core)

Valori verde 492 2.7 polistirene 1.60 acrilico 1.49 4.82 10²² 4.85 10²² 3.4 10²³

Le fibre plastiche WLS BCF-92 utilizzate hanno la caratteristica di spostare velocemente la lunghezza d'onda dal blu al verde.

NINO

Amplificatore/discriminatore uiltra veloce a basso potere dissipativo:

- Tecnologia IBM 0.25µm Si CMOS
- 8 canali / chip (chip: 2x4mm²)
- Input e stage successivi differenziali
- Dispositivo a bassa potenza dissipata (circa 40mW/chip)
- Jitter temporale intrinseco: 15-20 ps
- Alimentazione +2.5 V
- Output LVDS

Time Slewing

La correzione per time slewing è necessaria ed è dovuta alla trasformazione del segnale da analogico a digitale.