

Non-Symmetrized Hyperspherical Harmonics Method Applied to Light Hypernuclei

Fabrizio Ferrari Ruffino

September 22, 2015

Fabrizio Ferrari Ruffino NSHH Applied to Light Hypernuclei

Hypernuclei

- Hypernuclear chart
- Production
- Perspectives

Our method

- Ab initio methods
- Bound states calculation
- Non Symmetrized Hyperspherical Harmonics method
- Goals

イロト イポト イヨト イヨト

ъ

Nuclei with Strangeness

 $m_{\Lambda} = 1116 \; {
m MeV}$ $m_{\Sigma^+} = 1189 \; m_{\Sigma^0} = 1193 \; m_{\Omega^-} = 1673 \;$

 $au_{\Lambda} =$ 263 ps $au_{\Sigma^+} =$ 80 ps

 $\tau_{0^{-}} = 82 \ ps$

 $\tau_{\Sigma^0} = 7.4 \cdot 10^{-20} s$

イロン イボン イヨン イヨン 三日

Hypernuclear Chart

¹by M. Kaneta inspired by HYP06 conference poster > () +

э

Production of Hypernuclei

²from the PhD thesis of D.Lonardoni, 'From Hypernuclei to Hypermatter.

Fabrizio Ferrari Ruffino NSHH Applie

NSHH Applied to Light Hypernuclei

Research Directions

SUBNUCLEAR PHYSICS:

weak decay, quark structures ...

NUCLEAR ASTROPHYSICS: Hyperon puzzle...

<ロ> <同> <同> < 同> < 回> < 回>

\Rightarrow LOW ENERGY NUCLEAR PHYSICS: \Leftarrow

- study of N-Y interaction (and Y-Y);
- few-many body nuclear models (mainly for bound states);
- Experimental reference: γ-ray spectroscopy

Present and Future Perspectives

- Despite exensive investigations, single A hypernuclei knowledge is **far** from that of ordinary nuclei;
- Only **one** bound Σ-hypernucleus detected!
- No Ξ hypernuclei detected (some indications of weak attraction);
- No experimental information about Ω hypernuclei;
- Four $\Lambda\Lambda$ -hypernuclei energies measured ($^{6}_{\Lambda\Lambda}$ He, $^{10}_{\Lambda\Lambda}$ Be, $^{12}_{\Lambda\Lambda}$ Be, $^{13}_{\Lambda\Lambda}$ B);
- \Rightarrow Main goal: extension of nuclear chart in all directions!

・ロト ・ 同ト ・ ヨト ・ ヨト

Experimental investigation in the world

Fabrizio Ferrari Ruffino NSHH Applied to Light Hypernuclei

イロト イポト イヨト イヨト

э

We consider:

- A-body system;
- A particle degrees of freedom;
- well-defined microscopic Hamiltonian;
- internal relative motion treated **correctly**.

Then:

an **ab initio method** enables one to obtain the observable considered by solving the quantum mechanical many body equations, **without any uncontrolled approximation**.

 \Rightarrow We can focus on the input interactions.

(4個) (1日) (日)

Several ab initio methods:

- Monte Carlo methods;
- Coupled cluster model;
- No core shell model;
- Gaussian expansion method;
- $\bullet \Rightarrow$ Hyperspherical Harmonics method.

イロト イポト イヨト イヨト

General method for bound states

The starting problem is simple. We find:

- a **basis** for the Hilbert space;
- a well defined particle-particle interaction.

 \Rightarrow We *build* a truncated \hat{H} matrix, we *diagonalize* it... It's done!

Problems:

- selection of physical states → good symmetries;
- good convergence / computational weight.

The HH basis

We define hyperspherical Jacobi coordinates:

 \Rightarrow hyperradius ρ + hyperangles ϕ_i + angles

The A-body kinetic operator is then:

$$\hat{\mathcal{T}}=-rac{1}{2m}\Delta_
ho+\hat{\mathcal{T}}_{\mathcal{K}}(
ho)$$
 ; $\hat{\mathcal{T}}_{\mathcal{K}}=rac{1}{2m}rac{\hat{\mathbf{K}}_N^2}{
ho^2}$

~

・ロト ・ 同ト ・ ヨト ・ ヨト

where $\hat{\mathbf{K}}_{N}^{2}$ is the grand angular momentum operator:

$$\hat{\mathbf{K}}_2^2 = -\frac{\partial^2}{\partial \phi_2^2} - 4\cot(2\phi_2)\frac{\partial}{\partial \phi_2} + \frac{1}{\cos^2\phi_2}\hat{l}_1^2 + \frac{1}{\sin^2\phi_2}\hat{l}_2^2$$

The HHs are the **eigenfunctions** of $\hat{\mathbf{K}}_{N}^{2}$:

$$\hat{\mathbf{K}}_{N}^{2}\mathcal{Y}_{[K_{N}]}(\Omega_{N})=K_{N}(K_{N}+3N-2)\mathcal{Y}_{[K_{N}]}(\Omega_{N})$$

Non-symmetrized HH method

Problem: Selection of **antisymmetric** states (we deal with fermions):

 \Rightarrow We add to \hat{H} a special operator which **selects** 'by himself' the interesting states:

$$\hat{\mathcal{H}}' = \hat{\mathcal{H}} + \gamma \hat{\mathcal{C}}(\mathcal{A})$$

where:

$$\hat{C}(A) = \sum_{i>j} \hat{P}_{ij}$$

 \Rightarrow No need for explicit symmetrization. In case of Hypernuclei:

$$\hat{C} = \hat{C}_N(A - N_Y) + \hat{C}_Y(N_Y)$$

We are dealing now with different particles \rightarrow extension of the method.

・ロット (雪) (日) (日)

Some results

$\mathbf{V_{NN}} + \mathbf{V_{YN}}$	\mathbf{System}	NSHH	GEM
AV8'	$^{2}\mathrm{H}$	-2.22	
AV8'+S	$^3_{\Lambda}{ m H}$	-2.41	
	B_{Λ}	0.19	0.19
AV8'	$^{2}\mathrm{H}$	-2.22	
AV8'+S'	$^3_{\Lambda}{ m H}$	-2.55	
	B_{Λ}	0.35	0.36
AV8'	$^{2}\mathrm{H}$	-2.22	
AV8'+S''	$^3_{\Lambda}{ m H}$	-2.91	
	B_{Λ}	0.69	0.72
AV8'	$^{3}\mathrm{H}$	-7.76	
AV8'+S	$^4_{\Lambda}{ m H}$	-10.05	
	B_{Λ}	2.29	2.33
		N 10	e na un na é

Fabrizio Ferrari Ruffino NSHH Applied to Light Hypernuclei

▶ ▲ 臣 ▶ 臣 • • • • •

Present and future goals

Phenomenological interactions;

- 2-body potentials
- 3-body potentials
- Interactions from effectve field theory
- **③** Study of A>5 systems \rightarrow need for efficient **parallelization**
- Study of **double** AA hypernuclei?
- Study of hypernuclei with other hyperons?

・ロン ・ 一 レ ・ 日 と ・ 日 と

Our group in Trento - Few Body Theory

Supervisors:

- Giuseppina Orlandini
- Winfried Leidemann

PhD students:

- Sergio Deflorian
- Fabrizio Ferrari Ruffino

Collaborators:

- Nir Barnea The Hebrew University of Jerusalem, Jerusalem, Israel.
- Victor D. Efros Russian Research Centre 'Kurchatov Institute', Moscow, Russia.
- Sonia Bacca TRIUMF, Vancouver, Canada.
- Edward L. Tomusiak University of Saskatchewan, Saskatoon, Canada.

イロト イポト イヨト イヨト