Designing highly specific probes with tunable affinity

FOLDING

GSHT...TCPKC

Find a <u>specific</u>, <u>stable</u>, <u>3D</u> structure given a fixed amino acid sequence GSHT...TCPKC

DESIGN

Find the sequence of amino acids which will fold in a given target structure

Francesca Nerattini

Computational Physics Group, University of Vienna

Protein-ligand binding

Goal: Design protein-ligand systems characterized by high specificity and tunable affinity

- Design (MC,CATERPILLAR) sequences of both protein and substrate
- Introduce different percentages of "randomness"
- Evaluate the Binding Affinity (folding,MC,CATERPILLAR) $\Delta f \equiv -k_{\rm B}T \ln(Q_{\rm b}/Q_{\rm f})$

[1] I. Coluzza and D. Frenkel. "Monte Carlo study of substrate-induced folding and refolding of lattice proteins." *Biophysical journal* 92.4 (2007): 1150-1156.

The CATERPILLAR model

Coluzza, Ivan. "A coarse-grained approach to protein design: learning from design to understand folding." PloS one, 6, e20853 (2011)
 Coluzza, Ivan. "Transferable coarse-grained potential for de novo protein folding and design." PloS one, 9, e112852 (2014)

 Surface modeling **Stretched protein** Dummy atoms Cα carbons

WORK IN PROGRESS

- Design of protein-ligand sequences
- Evaluation of the binding affinity

FUTURE DIRECTION

Protein-protein docking

Test designed sequences stability

- Replace the native sequence with the designed one
- Side chain rotamer analysis (SCWRL4)
- Set up simulation box
- System equilibration

COARSE GRAINED:

CATERPILLAR

ATOMISTIC REPRESENTATION

- GROMACS
- amber99sb
- TIP3P water
- T = 298 K ; P = 1 atm

From here...

- Protein-ligand binding:
- Evaluate binding free energy and affinity of the test system.

• Protein-protein docking.

- Test of designed sequences:
- Take advantage of MD feedback in order to improve the CATERPILLAR MODEL.
- Set up BIAS-EXCHANGE METADYNAMICS with PLUMED.

Acknowledgements

• Prof. Christoph Dellago and Dr. Ivan Coluzza

- Automated Bio Marker (ABM) In silico automated tumor targeting
- Dr. Luca Tubiana

Theory and simulations of designable modular	
bionic proteins	

- Dr. Valentino Bianco
- M.Sc. Chiara Cardelli

Thank you for your attention

Designing highly specific probes with tunable affinity

Francesca Nerattini

Computational Physics Group, University of Vienna

Working with proteins..

• Protein folding and design are major biophysical problems, the solution of which would lead to important applications

FOLDING

Find a <u>specific</u>, <u>stable</u>, <u>3D</u> structure given a fixed amino acid sequence

DESIGN

Find the sequence of amino acids which will fold in a given target structure

GSHT...TCPKC

GSHT...TCPKC

- Identification of the pocket
 - Active site
 - Rotational analysis

- Identification of the pocket
- Surface modeling
 - define parameters
 - construct a 2D grid
 - move grid point until the minimum distance from protein
 - smooth the surface
 - reduce the number of points

Full atomistic 3MX7

GROMACS

-246000

- amber99sb
- TIP3P water
- T = 298 K ; P = 1 atm

Reference Structure for RMSD from RCSB

Model

Side chains interactions (R**)**

Hydrogen bonds (R, θ_1 , θ_2)

The depth dependends on the interaction matrix, i.e. on the different nature of the amino acids

Model

Implicit solvent model

$$E_{\text{Sol}}^{i} = \begin{cases} \varepsilon_{\text{Sol}}^{i} \left[\Omega - \Omega^{i} \right] & \Omega^{i} \leq \Omega \\ 0 & \Omega^{i} > \Omega \end{cases}$$
$$\Omega^{i} = \sum_{j} \left(1 - \frac{1}{1 + e^{2.5 \left(r_{\text{max}} - r_{ij} \right)}} \right)$$

 Ω = threshold for the number of contacts above which the amino acid is considered fully buried

εⁱ_{Sol} = (rescaled) Dolittle
hydrophobicity index
> 0 hydrophobic aa
< 0 hydrophilic aa

Model

Mean field theory Random Energy Model

Bio Velcro

- Automated Bio Marker (ABM) In silico automated tumor targeting
- Selective tumor cell targeting using low-affinity, multivalent interactions

• CD47-signal regulatory protein alpha

F. J. Martinez-Veracoechea, and D. Frenkel PNAS 2011;108:10963-10968

Full atomistic 2L09

GROMACS

- amber99sb
- TIP3P water
- T = 358 K ; P = 1 atm

Full atomistic 2L09

Reference Structure: SOLUTION NMR from RCSB

REAL SYSTEM: protein docking

TEST SYSTEM: protein-like surface

The CATERPILLAR model

Constraints are the key to understand proteins

Coluzza, Ivan. "A coarse-grained approach to protein design: learning from design to understand folding." PloS one, 6, e20853 (2011)
 Coluzza, Ivan. "Transferable coarse-grained potential for de novo protein folding and design." PloS one, 9, e112852 (2014)

The CATERPILLAR model

Coluzza, Ivan. "A coarse-grained approach to protein design: learning from design to understand folding." PloS one, 6, e20853 (2011)
 Coluzza, Ivan. "Transferable coarse-grained potential for de novo protein folding and design." PloS one, 9, e112852 (2014)