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Introduction: definitions - history - mathematics
Definition: An oscillator is isochronous if the oscillation period is independent of the total

mechanical energy E (and related oscillation amplitude A).

Harmonic The point mass performs sinusoidal isochronous oscillations x(t) = A sin(ωt + φ), with

oscillator: constant T = 2π
ω

(= 2π
√

m
k

for a harmonic spring-mass system).

Pendulum: G. Galilei believed it was isochronous (see
the epistolary with Guidobaldo del Monte
and the so called “Galileo’s theorem”)
but he was wrong!

H.C. Huygens realized that if the point mass swings over a cycloid instead of a circle, the
oscillator is actually isochronous. The potential energy is in this case quadratic in the
curvilinear abscissa (Lagrangian coordinate).

Isochronicity Any one dimensional dynamical system with

theorem: kinetic energy EK = 1
2mẋ2 and a potential

energy U(x) obtained by “shearing” a
parabolic potential performs isochronous
(in general not sinusoidal) oscillations.

Proof: By exploiting energy conservation, the oscillation period can be expressed as:

T (E) = 2

√

m

2

∫

xb (E)

xa(E)

dx
√

E − U(x)
= 2

√

m

2

∫ 1

0

d [xb(U) − xa(U)]

dU

√
E

dy
√
1 − y

.

The second alternative expression can be obtained by substitution of the integration
variable with y = U/E (the potential should display a single minimum at U = 0). The
explicit E dependence is canceled if the distance between the motion inversion points grows
like xb(E) − xa(E) ∝

√
E (where E is measured from the minimum).



Educational remarks n.1

Exposing students to the harmonic oscillator (and to the pendulum in the
sin(θ) ≃ θ limit) only, may induce the misconception that all oscillators
are harmonic and isochronous!

=⇒ It is useful to propose experimental investigations of various types of
oscillators: mass-spring, pendulum (also when sin(θ) 6= θ), bouncing
ping-pong ball, ... to realize that some of them are not isochronous.

=⇒ Using an analytical approach it is instructive to calculate the
oscillator period for different potential wells (square, triangular, isotonic
potential U(x) = 1

2ax
2 + b

x2 , x > 0, gravitational potential with

centrifugal barrier U(x) = − 2
x
+ 1

x2 + 1, x > 0, ...) by direct
integration of:

T (E ) = 2

√

m

2

∫ xb(E)

xa(E)

dx
√

E − U(x)

that is often elementary.



The unbalanced rocking cylinder
A very interesting mechanical oscillator is given by a cylindrical object with the

center of mass displaced from the axis able to roll without slipping on an

horizontal plane.

This system is the practical realization of the ideal system of a point mass fixed

on a mass-less circle rolling on a horizontal line.

Rocking mass Cycloidal pendulum

=/

Two Italian groups worked independently on very similar systems.

A. Filipponi, “A non-isochronous rocking oscillator.”, Am. J. Phys. 82, 1142-1148 (2014).

Pavia L’Aquila

The work from the Pavia group was published in:
P. Onorato, M. Malgieri, P. Mascheretti, and A. De Ambrosis, “The surprising rolling spool:
experiments and theory from mechanics to phase transitions.”, Eur. J. Phys. 35, 055011 (2014).



The physical description at 1st year level
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The system has one degree of freedom described by

a linear or angular coordinate x = Rθ. The external

forces are the weight and the support force (i.e.

the one required to satisfy the rolling constraint).

A couple of instantaneous configurations during a

wide amplitude oscillation with the relevant velocities

~v , acceleration ~a, and forces ~F , are illustrated below:

v a F

0 Rπ

t=1.77 s

0 Rπ

t=1.89 s

Educational remarks n.2
In order to eliminate the effect of the “unknown” support force it is convenient to

evaluate moments about the instantaneous contact point C, similarly to the rolling

cylinder case, and use the equation:

d~LC

dt
= −~vC × ~P + ~Mext (1)

Here, however, the red term cannot be omitted since ~vC and ~vcm are not parallel!

An additional complication is that the moment of inertia about the contact axis

depends on the coordinate θ.



The physical description at 1st year level (and beyond)
The moment of inertia about the contact axis is given by

I (θ) = I0 +MR2 + Im +m(R2 + r2 − 2rR cos θ) = I
[

1 +
α

2
(1− cos θ)

]

where I = I0 +MR2 + Im +m(R − r)2 and α = 4mrR/I is a dimensionless parameter

weighting the magnitude of its variable part.

The non trivial component of Eq. (1) provides the differential equation of motion:

d

dt

[

I (θ)θ̇
]

= −mgr sin θ +mrR θ̇2 sin θ ⇔ I (θ)θ̈ = −mgr sin θ −mrR θ̇2 sin θ (2)

The kinetic and potential energies are given by:

K(θ, θ̇) =
1

2
I θ̇2

[

1 +
α

2
(1− cos θ)

]

and U(θ) = mgr(1− cos θ)

U(θ) is identical to the pendulum case which is retrieved in the α → 0 limit.

In the Lagrangian formalism Eq. (2) can be readily obtained by applying the

Euler-Lagrange equation to K − U.

In the ideal conservative limit the total mechanical energy E is constant and equals

the potential energy at the angle of maximum swing U(θM).

The resulting energy conservation equation is:

U(θ) + K(θ, θ̇) = mgr(1− cos θM) = E



The period calculation
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α = 8An integral expression for the oscillation

period, suitable for numerical evaluation,

can be obtained from energy conservation

as:

T (θM) = T0
2

π

∫ π

2

0

√

1 + αǫ sin2(x)
√

1− ǫ sin2(x)
dx ,

where T0 = T (0) = 2π
√

I
mgr

, ǫ = sin2
(

θM
2

)

= 1−cos θM
2

= E
2mgr

and α = 4mrR
I

Similarly to the pendulum (α = 0) case, an analytical expansion for T in even powers

of θM holds: T

T0
= 1 + C2 θ2M + C4 θ4M + C6 θ6M + O(θ8M)

The dependence of the coefficients on the parameter α is shown below:
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The period measurements
The system investigated in L’Aquila has T0 ≃ 0.65 s and α ≃ 2. The coefficient C2 is
about 3 times that for the pendulum, therefore the T (θM) dependence can be easily

detected also with manual measurements × . Higher precision T (θM)
measurements • performed with a computer acquisition method are in perfect

agreement with the numerical integration of the analytical expression.
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Notice also that for α ≈ 2 the deviation from
a linear approximation in θ2

M
is below 1%

up to θM ≃ 2 rad.



The support forces: theory and measurements

The reaction force ~R of the support plane and its normal N and horizontal τ

components are obtained from Eq. (3):
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d~P
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= (M +m)~g + ~R (3)

N = (M+m)(g+ÿcm) = (M+m)g+mr(θ̈ sin θ+θ̇2 cos θ)

τ = (M+m)ẍcm = [(M +m)R −mr cos θ] θ̈+mr θ̇2 sin θ
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ẍ
cm

(m
/s

2
)

2 3

(c)

8 9
t (s)

24 25

τ can be measured with a simple set-up using a

digital force gauge. It is proportional to the center

of mass horizontal acceleration. All other kinematic

quantities are easily obtained by integration.

Digital Force Gauge



The phase space

A typical phase space plot corresponding to the constant energy curves

1

4

(

T0

2π

)2

θ̇2
[

1 + α
1− cos θ

2

]

+
1− cos θ

2
= ǫ

in dimensionless units (at ǫ = 0.1, 0.2, 0.3, . . . , 1.0, . . . 1.5)

is reported below, together with experimental data (•).
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The phase space for the pendulum (α = 0)

is reported on the right hand side, for comparison.



Conclusions

◮ The unbalanced rocking cylinder is an interesting mechanical system with one

degree of freedom able to perform non-isochronous oscillation.

◮ The T (θ2
M
) dependence can be tuned from the pendulum limit to a slope at

least three times greater with an approximate (1%) linear dependence up to

θM ≈ 2 rad. In contrast to the pendulum case no limitations in the swing angle

are present and no additional support is needed.

◮ The system is well suited to perform both manual timing and high precision

computer acquisition experiments.

◮ The system was proposed as a first year laboratory assessment: the students

where challenged to investigate the system and tell if it was isochronous or not

and (in this case) tell if it was similar to the investigated pendulum case.

◮ The physical description provides an instructive case in which the term

−~v0 × ~P 6= 0 cannot be omitted. The system was introduced as an example in

General Physics courses and good students where able to discern cases in which

−~v0 × ~P = 0 or not.

Thank you for your attention!
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