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Interactions/Models
hard or soft spheres 
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Gas Case

systems with volume fractions ’ ¼ Nv=V " 1, where
N ¼ 5000 is the number of particles, v # !d3=6 is the
volume of a particle, and V is the volume of the system. For
simplicity, we set d ¼ 1, m ¼ 1, and Boltzmann constant
kB ¼ 1. The implementation of advanced volume-bias
techniques [28,31] allows us to equilibrate the system
down to T$ ¼ 0:125 (in units of m2=d3). To accurately
take into account dipole-dipole interactions we used Ewald
summation. The total dipole moment auto-correlation
function was used to check statistical independence of
measurements. It allowed us to reach error bars on the
order of symbol size in all figures. For further details on
the simulation approach, see Ref. [28]. To partition parti-
cles into clusters, we employ a mixed distance-energy
criterion: two particles are considered as bonded if their
interaction energy is negative and if their relative distance
is smaller than rb ¼ 1:3 [29]. A chain contains two single-
bonded particles connected by particles having two neigh-
bors. If all particles in a cluster have only two neighbors
then the cluster is labelled as a ring. Any other kind of
aggregates is labelled as a branched cluster. The fraction
of particles in branched structures is negligible in the
investigated volume fraction range.

Theory.—The key hypothesis of our work is the assump-
tion that the decrease of " at low T arises from the
progressive thermodynamic stabilization of the ring struc-
tures, whose magnetic response we consider to be negli-
gible. We foresee a progressive evolution of " on cooling
which starts from the independent particles value at high T,
and increases anomalously due to the formation of linear
chains at smaller T to pass through a maximum when the
equilibrium between chains and rings starts to favor closed
structures. We start by developing a theoretical approach
to model the density and T dependence of the ratio of
particles in rings and chains, appropriate for the case of
low densities. We write the free energy density for an
ideal mixture of dipolar chains and rings as [30,32–34]

F½fgng; ffng&
VkBT

¼
X1

n¼1

gn ln
gnv

eQn
þ
X1

n¼5

fn ln
fnv

eWn
; (1)

where gn and fn are the equilibrium volume fractions of
chains and rings, respectively; Qn and Wn denote the
corresponding (normalized by V=v) partition functions of
an n-particle chain and ring. The free-energy functional
[Eq. (1)] has to be minimized with respect to the distribu-
tions fgng and ffng preserving ’,

X1
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X1

n¼5

fnn ¼ ’

v
: (2)

Guided by ground state calculations [35] and numerical
results [28,29,36], we assume that rings smaller than five
particles do not form, so that the ring contribution in
Eq. (2) starts from n ¼ 5. For low temperature, a simple
nearest-neighbor approach would fail to describe the

long-range magnetic dipole-dipole interaction between
the particles belonging to one cluster. As discussed in
detail in the Supplemental Material [37], the partition
functions of a chain and of a ring can be approximated as

QnðT$Þ ¼ qCðnÞ; WnðT$Þ ¼ QnðT$Þ q
RðnÞ*CðnÞ

n3#þ1 ; (3)
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with $ð3Þ denoting the Riemann zeta function of three;
Rðnþ1Þ=2 stands for the residual of division, and ½-& has the
meaning of the integer part of the expression in the brack-
ets. The low-T dimer partition function q (note that
Cð2Þ ¼ 1 and hence Q2ðT$Þ ¼ q), derived first by
de Gennes and Pincus [38], is

qðT$Þ ¼ T$3

3
exp

!
2

T$

"
: (5)

In Eq. (3), # ¼ 0:588 is the self-avoiding random walk
exponent. The term 1=n3#þ1 inWnðT$Þ captures the differ-
ence in entropy between chains and rings arising from the
n ways of opening a ring to form a chain; the difference
between the numbers of self-avoiding paths of chains and
rings is proportional to n3# [39]. Finally, minimizing
Eq. (1), one obtains compact expressions for gn and fn,

gn ¼ 1

v
Qnp

n; fn ¼
1

v
Wnp

n: (6)

Here, p, the Lagrange multiplier to be found from Eq. (2),
has the meaning of activity. Figure 1 shows the resulting
(parameter-free) prediction for the fractions of particles
aggregated in rings and in chains and compares them to
corresponding Monte Carlo (MC) results. The redistribu-
tion of particles between chains and rings becomes vivid.
For all investigated volume fractions, once T$ + 0:12, an
almost complete crossover from chains to rings takes
place.
In order to estimate the ability of the theory to predict

the cluster size distribution of rings and chains at different
T$, we plot in Fig. 2 the ratio fn=gn as a function of n. For
values of the ratio fn=gn greater (smaller) than 1, rings are
more (less) abundant than chains of the same size. The
ratio fn=gn coincides with Wn=Qn [see Eq. (6)] showing
that the equilibrium between chains and rings is controlled
by the subtle interplay between the energetic gain of
forming one additional bond and by the entropic penalty
of joining the two chain ends when converting a chain into
a ring. The numerical results for this ratio, displayed in
Fig. 2, show a small dependence on density at fixed
temperature (for the low densities simulated), supporting
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function was used to check statistical independence of
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order of symbol size in all figures. For further details on
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criterion: two particles are considered as bonded if their
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is smaller than rb ¼ 1:3 [29]. A chain contains two single-
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bors. If all particles in a cluster have only two neighbors
then the cluster is labelled as a ring. Any other kind of
aggregates is labelled as a branched cluster. The fraction
of particles in branched structures is negligible in the
investigated volume fraction range.

Theory.—The key hypothesis of our work is the assump-
tion that the decrease of " at low T arises from the
progressive thermodynamic stabilization of the ring struc-
tures, whose magnetic response we consider to be negli-
gible. We foresee a progressive evolution of " on cooling
which starts from the independent particles value at high T,
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structures. We start by developing a theoretical approach
to model the density and T dependence of the ratio of
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Guided by ground state calculations [35] and numerical
results [28,29,36], we assume that rings smaller than five
particles do not form, so that the ring contribution in
Eq. (2) starts from n ¼ 5. For low temperature, a simple
nearest-neighbor approach would fail to describe the
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detail in the Supplemental Material [37], the partition
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with $ð3Þ denoting the Riemann zeta function of three;
Rðnþ1Þ=2 stands for the residual of division, and ½-& has the
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In Eq. (3), # ¼ 0:588 is the self-avoiding random walk
exponent. The term 1=n3#þ1 inWnðT$Þ captures the differ-
ence in entropy between chains and rings arising from the
n ways of opening a ring to form a chain; the difference
between the numbers of self-avoiding paths of chains and
rings is proportional to n3# [39]. Finally, minimizing
Eq. (1), one obtains compact expressions for gn and fn,
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Here, p, the Lagrange multiplier to be found from Eq. (2),
has the meaning of activity. Figure 1 shows the resulting
(parameter-free) prediction for the fractions of particles
aggregated in rings and in chains and compares them to
corresponding Monte Carlo (MC) results. The redistribu-
tion of particles between chains and rings becomes vivid.
For all investigated volume fractions, once T$ + 0:12, an
almost complete crossover from chains to rings takes
place.
In order to estimate the ability of the theory to predict

the cluster size distribution of rings and chains at different
T$, we plot in Fig. 2 the ratio fn=gn as a function of n. For
values of the ratio fn=gn greater (smaller) than 1, rings are
more (less) abundant than chains of the same size. The
ratio fn=gn coincides with Wn=Qn [see Eq. (6)] showing
that the equilibrium between chains and rings is controlled
by the subtle interplay between the energetic gain of
forming one additional bond and by the entropic penalty
of joining the two chain ends when converting a chain into
a ring. The numerical results for this ratio, displayed in
Fig. 2, show a small dependence on density at fixed
temperature (for the low densities simulated), supporting
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FIG. 3. (a) Two s = 1, w = 3 defect clusters. (b) s = 2, w = 2 defect clus-
ters. This kind of defect clusters stems from intra-cluster interactions. (c) s
= 2, w = 4 defect clusters. These form when two linear structures are close
to each other. The result is a weak inter-cluster interaction. (d) s = 3 de-
fect clusters with w = 4 (left) and w = 3 (right). The right defect cluster is
a slightly defective TWJ. The one on the left is similar in nature to the de-
fect clusters having both s and w as even numbers. (e) s = 4, w = 4 defect
clusters. These originate from the interaction between chains, rings, or part of
chain-like structures. (f) Defect clusters with a mixed nature. (Left) A s = 5,
w = 3 defect cluster which can be seen as a combination of an intra-cluster
defect and a TWJ. (Right) A s = 4, w = 5 defect cluster coming from a
s = 4, w = 4 defect cluster and a s = 2, w = 2 defect cluster.

Defect clusters with s = 2 can be divided into two main
categories: defect clusters having w = 2 (Figure 3(b)) and
defect clusters having w = 4 (Figure 3(c)). As shown in
Figure 3(b), the former originate from intra-cluster interac-
tions (or equivalently from the thermal distortion of the clus-
ter) and, as such, possibly do not play a significant role. By
contrast, s = 2, w = 4 defect clusters, shown in Figure 3(c),
are related to inter-cluster interactions. They form when two
linear-like structures (e.g., a chain, a ring, or a part thereof)
are close enough.

The majority of the defect clusters having s = 3 has either
w = 3 or w = 4. Figure 3(d) provides two examples of these
structures. They have the same nature of defect clusters with s
= 1, w = 3 (Safran-like defects) and s = 2, w = 4 (chain-ring
interaction), respectively.

The most numerous defect clusters with s = 4 are those
with w = 4. Two examples are shown in Figure 3(e). Similar
to the (s = 2, w = 4) and (s = 3, w = 4) cases, these defect
clusters stem from the interaction between chains, rings, or
part of chain-like structures.

Every other observed defect cluster is just a combination
of the aforementioned defect clusters. We provide two exam-
ples in Figure 3(f). The left panel contains a “defective” ring
touching a chain. It is a four-way junction (s = 3, w = 4)
plus two intra-cluster defects. In the right panel, two rings are
joined together by a four-way junction (s = 4, w = 4). An
additional monomer makes it a five-way junction.

To summarise, despite the large number of possibilities,
two main classes are found: defect clusters with w = 3 that,
independently from the value of s, are TWJs and can always
be associated with chain branching. By contrast, defect clus-

ters with w = 2 or w = 4, regardless of s, are responsible
for intra-cluster interactions and interactions between rings
or chains, respectively. Therefore, both defect classes do not
involve bonding of loose chain ends.

C. Density and T dependence of the concentration
of defects

Next, we investigate the ρ- and T-dependences of the
density of defect clusters, according to their type.

Figure 4 shows the density of defect clusters ρd for the
four most common sizes s as a function of density for two
temperatures. In all cases, there seems to be a density range
for which all ρd are compatible with power-laws with similar
exponents. As previously noted, at low temperature the num-
ber of defect clusters with s = 2 is larger than the number
of defect clusters with s = 1 for all densities. This is due to
the decrease in the number of s = 1 defect clusters occurring
upon cooling, the physical origin of which will be discussed
at the end of this section.

Figure 5 shows ρd as a function of density for defect clus-
ters having 1 < s < 5, accounting also for the different val-
ues of w, i.e., the number of ways out of the junction. Since
every s = 1 defect cluster has w = 3, we omit this class of
junctions from this specific analysis. From the plots it is clear
that, for ρ > 0.01, the most abundant defect clusters having
s > 1 also have w = 4. Among s = 3 defects there is also a
non-negligible number of three-way junctions.

The previous analysis confirms that defect clusters should
be classified according to w and that only junctions having
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FIG. 4. Density of defect clusters having s = 1, 2, 3, 4 for (a) T = 0.140 and
(b) T = 0.170 as a function of the overall density.
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be observed in solution using cryogenic electron microscopy47

and atomic force microscopy of assemblies at cross-linkable
oil–water interfaces.48 On the numerical side, various simulation
studies have been brought forward to describe self-assembly in
magnetic nanocolloids by using simple models of dipolar hard- or
soft-spheres.45,49,50 Recently, we showed that in highly diluted gas
of dipolar hard spheres, chains turn into rings as temperature
decreases.51 This structural transition provided a possible solution
to a long-lasting debate about the non-monotonic temperature
dependence of initial magnetic susceptibility in the suspensions of
magnetic nanoparticles.52,53 However, at higher concentrations of
magnetic nanoparticles, the assumption of non-interacting chains
and rings is not valid any more, and one needs to take into account
the next hierarchical step: self-assembly of chains and rings (in the
following referred to as primary structures) into more complex
branched structures and, eventually, into networks. One of the first
attempts to handle branched structures in dipolar hard-sphere
systems was introduced in ref. 54, 55, where a transition from pure
chains to a system of branching chains (the gas of Y-junctions) was
predicted. Even though Y-junctions are clearly one of the main
branching mechanisms in dipolar hard spheres, their importance
and abundance decrease dramatically with temperature.56

To shed light on the scenario of temperature-induced struc-
tural transitions in magnetic nanocolloids at moderate con-
centrations, we develop a theoretical approach and perform
extensive Monte Carlo simulations, the result of which we
present herein. Our theoretical approach is based on density-
functional theory, where single nanoparticles can self-assemble
in ‘‘defect-free’’ chains and rings as well as in ‘‘defect struc-
tures’’, in which primary structures are merged with the help of
specific ‘‘defect particles’’. All these basic units are presented in
Fig. 1. After a thorough numerical and visual analysis of simula-
tion results,56 we identify three (and only three) defect particles,
labeled in this paper as Y, X and Z defects. Defects Y include
Safran’s branching.54 The defects of types X and Y (see, Fig. 1) act
as cross-linkers between primary structures. Defects of type Z do
not link primary structures, rather they can be considered as
internal defects of isolated chains and rings.

In this paper we limit our theoretical analysis to the clusters
that contain at most one defect. Even though our approach can
in principle be extended to multiple defects, it is essential
to understand the first steps of the hierarchical self-assembly
of dipolar nanoparticles, namely the aggregation of single
particles into primary structures and the subsequent merging
of the latter into single-defect clusters. Focusing on the differ-
ent defect types, we observe a clear hierarchy in the structures
formed on cooling: first, when the thermal fluctuations are still
comparable to the dipolar interactions, only short linear chains
form. Then, when the thermal energy becomes smaller, depend-
ing on the concentration, two different sequences of structural
transitions take place: mostly chains and rings form in the dilute
regime, while chains, rings and branches appear in denser
systems. Finally, at very high dipolar strength (or, conversely,
at very low temperature) most of the Y defects are replaced by
more energetically advantageous and infinitesimally magneto-
responsive defect structures made of two rings cross-linked

by one X defect. Fig. 2 provides a cartoon of these different
aggregation pathways.

2 Model and methods
2.1 Model

We investigate systems composed of N magnetic nanoparticles
at varying temperature T and concentration c. Two particles i
and j interact through the potential Vtot = VHS + Vdd, where VHS

is the hard-sphere potential given by

VHSði; jÞ ¼
1 for rij o d

0 otherwise

(

(1)

where rij = |-rij| is the inter-particle distance and d is the particle
diameter. Vdd is the dipole–dipole interaction, defined as
follows:

Vddði; jÞ ¼
~mi $~mj % 3 ~mi $ ~̂rij

! "
~mj $ b~rij
! "

rij3
(2)

Fig. 1 An overview of all the basic units we consider in three different
representations. Top row: photographs of commercially available mag-
netic beads; middle row: topological classification used in the proposed
theoretical approach, here in black we indicate chain segments and
in blue – rings; bottom row: structures extracted from Monte Carlo
computer simulations analysed in this paper. From left to right: (I) a linear
chain of regular particles; (II) a ring of regular particles; (III) three linear
chains of regular particles connected by one Y defect; (IV) one linear chain
and one ring of regular particles connected by a Y defect; (V) four linear
chains of regular particles connected by one X defect; (VI) one X defect
connecting one ring and two chains of regular particles; (VII) one X defect
joining two rings of regular particles; (VIII) a linear chain with an internal Z
defect; (IX) a ring with an internal Z defect.

Fig. 2 Cartoon sketching the temperature-induced structural transitions
we observe at intermediate concentrations.
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where ~mk is the magnetic moment of particle k; ~̂rij ¼ rij
!
~rij
"" "". All

the particle magnetic moments have the same magnitude m.
In the text, kB is the Boltzmann constant, b = 1/T, lengths is

measured in units of the particle diameter d and energy in units
of m2/d3. Therefore, temperature is measured in units of kBd3/m2.

2.2 Theoretical approach

Our detailed analysis of branching in ref. 56 revealed the possibility
to split all possible branching points in the system into three main
classes only (see Fig. 1), using the number of ways out w (in the
following ‘‘valency’’) as a label. Looking at Fig. 1 one can see that
particles of type Z have w = 2, particles of type Y are characterised by
w = 3 and particles of type X have w = 4. Each of these defect particles
also has a ‘‘charge’’ due to the possible dipolar orientations of defect
neighbours: Y ones have charge 1 or "1, since if two dipoles enter
the Y particle, then one necessarily exits (charge "1); conversely, if
two dipoles exit, one enters (charge +1). By contrast, the charge of Z
and X particles is always zero, since if one or two dipoles enter, one
or two others always exit from the defect particle.

In our model, defect particles do not interact with each other;
rather they interact with ‘‘regular’’ particles. The latter can form
chains and rings and as such connect defect particles. One can also
think of our system as being composed by four different types of
particles: one type can only form chains and rings, the other type (Z)
can attach to a ring or to a chain, but cannot connect any of the two
to some other cluster, whereas the other two (Y and X) connect chains
and rings, effectively serving as cross-linkers with a fixed valency.

In Fig. 1 we showed the nine classes of structures that contain
up to one defect particle. The free energy (F) per unit volume of
this system can be obtained by summing up the free energies
of these classes. In the following, we denote their equilibrium
concentrations as g(#).

F ¼ kBT
X

i

K ~i
#
Þg ~i
#
Þ ln

g ~i
#
Þv ~i
#
Þ

eQ ~i
# $

 !

: (3)

Here, kBT is the thermal energy. Unlike the monodisperse case,51

the summation here cannot be carried over the number of particles

in a cluster, but one has to introduce a vector
-

i containing the
information about not only the size of the cluster but also about
its topology, i.e.

-

i = (n, k1, k2, mY, mX, mz)

where n Z 0 is the amount of regular particles in chain
segments; (kj Z 4) or (kj = 0), j = 1, 2 are the numbers of regular
particles in ring segments; mY, mX and mZ are the numbers of
type Y, X and Z defects present in the cluster (in the current
study

P
l¼X;Y ;Z

ml ¼ 0 for primary structures and 1 for the branches).

In addition, the partition function of each class also depends

on
-

i: Q(
-

i). Finally, v(
-

i) is a characteristic volume, which allows us
to express the partition functions in a simple factorised way

(see, Table 1). The parameter K(
-

i) is a combinatorial factor,
representing the number of entropically distinguishable

clusters from the same class, having the same
-

i and with the

same partition function Q(
-

i). The free energy can thus be
computed by minimising the functional (3) taking into account
the mass-balance condition:

X

i

K ~i
#
ÞN ~i
#
Þgð~i Þ ¼ f

v
: (4)

This condition constraints the total number of particles in a unit
volume (f/v, f being regular particle volume fraction, v standing for
particle volume). Note that the total number of regular particles in a
cluster of class i is given by N(i) = n + k1 + k2 + mYsY + mXsX + mZsZ,
where a defect particle depending on its type contains sY, sX or sZ

regular particles. These parameters are used to simplify the descrip-
tion of the cluster formation. As shown in ref. 56, the number of
particles in the defects can vary from one to four, however, the actual
internal structure is irrelevant. Thus, we can unify the treatment and
limit the number of defect particle types.

Table 1 Characteristics of aggregate classes

Class ~i v(~i ) N(~i ) Q(~i ) K(~i )

I (n,0,0,0,0,0) v n en"1L
1

II (0,k1,0,0,0,0) v k1 ek1R 1
III (n,0,0,1,0,0) v

vY
vYL

n + 1 en"3L eY eYL
3

2
n" 1

2

% &
n" n" 1

2

% &
" 1

' (a

IV (n,k1,0,1,0,0) v
vY
vYL

n + k1 + 1 en"1L ek1"1R eY eYLeYR
2 2(k1 + 1)a

V (n,0,0,0,1,0) v
vX
vXL

n + 1 en"4L eX eXL
4 nðn" 1Þðn" 2Þ

24
n" even

ðn" 1Þðnþ 1Þðn" 3Þ
24

n" odd

VI (n,k1,0,0,1,0) v
vX
vXL

n + k1 + 1 en"2L ek1"1R eX eXL
2eXR

2 (n " 1)(k1 + 1)

VII (0,k1,k2,0,1,0) v
vX
vXR

k1 + k2 + 1 ek1"1R ek2"1R eX eXR
4 k1 + k2 + 1

VIII (n,0,0,0,0,1) v
vZ
vZL

n + 1 en"2L eZeZL
2 n " 1

IX (0,k1,0,0,0,1) v
vZ
vZR

k1 + 1 ek1"1R eZeZR2 k1 + 1

a Here, the factor 2 reflects the possibility of Y defect to have a charge 1 or "1; [#] means the integer part of the argument.
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be observed in solution using cryogenic electron microscopy47

and atomic force microscopy of assemblies at cross-linkable
oil–water interfaces.48 On the numerical side, various simulation
studies have been brought forward to describe self-assembly in
magnetic nanocolloids by using simple models of dipolar hard- or
soft-spheres.45,49,50 Recently, we showed that in highly diluted gas
of dipolar hard spheres, chains turn into rings as temperature
decreases.51 This structural transition provided a possible solution
to a long-lasting debate about the non-monotonic temperature
dependence of initial magnetic susceptibility in the suspensions of
magnetic nanoparticles.52,53 However, at higher concentrations of
magnetic nanoparticles, the assumption of non-interacting chains
and rings is not valid any more, and one needs to take into account
the next hierarchical step: self-assembly of chains and rings (in the
following referred to as primary structures) into more complex
branched structures and, eventually, into networks. One of the first
attempts to handle branched structures in dipolar hard-sphere
systems was introduced in ref. 54, 55, where a transition from pure
chains to a system of branching chains (the gas of Y-junctions) was
predicted. Even though Y-junctions are clearly one of the main
branching mechanisms in dipolar hard spheres, their importance
and abundance decrease dramatically with temperature.56

To shed light on the scenario of temperature-induced struc-
tural transitions in magnetic nanocolloids at moderate con-
centrations, we develop a theoretical approach and perform
extensive Monte Carlo simulations, the result of which we
present herein. Our theoretical approach is based on density-
functional theory, where single nanoparticles can self-assemble
in ‘‘defect-free’’ chains and rings as well as in ‘‘defect struc-
tures’’, in which primary structures are merged with the help of
specific ‘‘defect particles’’. All these basic units are presented in
Fig. 1. After a thorough numerical and visual analysis of simula-
tion results,56 we identify three (and only three) defect particles,
labeled in this paper as Y, X and Z defects. Defects Y include
Safran’s branching.54 The defects of types X and Y (see, Fig. 1) act
as cross-linkers between primary structures. Defects of type Z do
not link primary structures, rather they can be considered as
internal defects of isolated chains and rings.

In this paper we limit our theoretical analysis to the clusters
that contain at most one defect. Even though our approach can
in principle be extended to multiple defects, it is essential
to understand the first steps of the hierarchical self-assembly
of dipolar nanoparticles, namely the aggregation of single
particles into primary structures and the subsequent merging
of the latter into single-defect clusters. Focusing on the differ-
ent defect types, we observe a clear hierarchy in the structures
formed on cooling: first, when the thermal fluctuations are still
comparable to the dipolar interactions, only short linear chains
form. Then, when the thermal energy becomes smaller, depend-
ing on the concentration, two different sequences of structural
transitions take place: mostly chains and rings form in the dilute
regime, while chains, rings and branches appear in denser
systems. Finally, at very high dipolar strength (or, conversely,
at very low temperature) most of the Y defects are replaced by
more energetically advantageous and infinitesimally magneto-
responsive defect structures made of two rings cross-linked

by one X defect. Fig. 2 provides a cartoon of these different
aggregation pathways.

2 Model and methods
2.1 Model

We investigate systems composed of N magnetic nanoparticles
at varying temperature T and concentration c. Two particles i
and j interact through the potential Vtot = VHS + Vdd, where VHS

is the hard-sphere potential given by

VHSði; jÞ ¼
1 for rij o d

0 otherwise

(

(1)

where rij = |-rij| is the inter-particle distance and d is the particle
diameter. Vdd is the dipole–dipole interaction, defined as
follows:

Vddði; jÞ ¼
~mi $~mj % 3 ~mi $ ~̂rij

! "
~mj $ b~rij
! "

rij3
(2)

Fig. 1 An overview of all the basic units we consider in three different
representations. Top row: photographs of commercially available mag-
netic beads; middle row: topological classification used in the proposed
theoretical approach, here in black we indicate chain segments and
in blue – rings; bottom row: structures extracted from Monte Carlo
computer simulations analysed in this paper. From left to right: (I) a linear
chain of regular particles; (II) a ring of regular particles; (III) three linear
chains of regular particles connected by one Y defect; (IV) one linear chain
and one ring of regular particles connected by a Y defect; (V) four linear
chains of regular particles connected by one X defect; (VI) one X defect
connecting one ring and two chains of regular particles; (VII) one X defect
joining two rings of regular particles; (VIII) a linear chain with an internal Z
defect; (IX) a ring with an internal Z defect.

Fig. 2 Cartoon sketching the temperature-induced structural transitions
we observe at intermediate concentrations.
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where ~mk is the magnetic moment of particle k; ~̂rij ¼ rij
!
~rij
"" "". All

the particle magnetic moments have the same magnitude m.
In the text, kB is the Boltzmann constant, b = 1/T, lengths is

measured in units of the particle diameter d and energy in units
of m2/d3. Therefore, temperature is measured in units of kBd3/m2.

2.2 Theoretical approach

Our detailed analysis of branching in ref. 56 revealed the possibility
to split all possible branching points in the system into three main
classes only (see Fig. 1), using the number of ways out w (in the
following ‘‘valency’’) as a label. Looking at Fig. 1 one can see that
particles of type Z have w = 2, particles of type Y are characterised by
w = 3 and particles of type X have w = 4. Each of these defect particles
also has a ‘‘charge’’ due to the possible dipolar orientations of defect
neighbours: Y ones have charge 1 or "1, since if two dipoles enter
the Y particle, then one necessarily exits (charge "1); conversely, if
two dipoles exit, one enters (charge +1). By contrast, the charge of Z
and X particles is always zero, since if one or two dipoles enter, one
or two others always exit from the defect particle.

In our model, defect particles do not interact with each other;
rather they interact with ‘‘regular’’ particles. The latter can form
chains and rings and as such connect defect particles. One can also
think of our system as being composed by four different types of
particles: one type can only form chains and rings, the other type (Z)
can attach to a ring or to a chain, but cannot connect any of the two
to some other cluster, whereas the other two (Y and X) connect chains
and rings, effectively serving as cross-linkers with a fixed valency.

In Fig. 1 we showed the nine classes of structures that contain
up to one defect particle. The free energy (F) per unit volume of
this system can be obtained by summing up the free energies
of these classes. In the following, we denote their equilibrium
concentrations as g(#).

F ¼ kBT
X

i

K ~i
#
Þg ~i
#
Þ ln

g ~i
#
Þv ~i
#
Þ

eQ ~i
# $

 !

: (3)

Here, kBT is the thermal energy. Unlike the monodisperse case,51

the summation here cannot be carried over the number of particles

in a cluster, but one has to introduce a vector
-

i containing the
information about not only the size of the cluster but also about
its topology, i.e.

-

i = (n, k1, k2, mY, mX, mz)

where n Z 0 is the amount of regular particles in chain
segments; (kj Z 4) or (kj = 0), j = 1, 2 are the numbers of regular
particles in ring segments; mY, mX and mZ are the numbers of
type Y, X and Z defects present in the cluster (in the current
study

P
l¼X;Y ;Z

ml ¼ 0 for primary structures and 1 for the branches).

In addition, the partition function of each class also depends

on
-

i: Q(
-

i). Finally, v(
-

i) is a characteristic volume, which allows us
to express the partition functions in a simple factorised way

(see, Table 1). The parameter K(
-

i) is a combinatorial factor,
representing the number of entropically distinguishable

clusters from the same class, having the same
-

i and with the

same partition function Q(
-

i). The free energy can thus be
computed by minimising the functional (3) taking into account
the mass-balance condition:

X

i

K ~i
#
ÞN ~i
#
Þgð~i Þ ¼ f

v
: (4)

This condition constraints the total number of particles in a unit
volume (f/v, f being regular particle volume fraction, v standing for
particle volume). Note that the total number of regular particles in a
cluster of class i is given by N(i) = n + k1 + k2 + mYsY + mXsX + mZsZ,
where a defect particle depending on its type contains sY, sX or sZ

regular particles. These parameters are used to simplify the descrip-
tion of the cluster formation. As shown in ref. 56, the number of
particles in the defects can vary from one to four, however, the actual
internal structure is irrelevant. Thus, we can unify the treatment and
limit the number of defect particle types.

Table 1 Characteristics of aggregate classes

Class ~i v(~i ) N(~i ) Q(~i ) K(~i )

I (n,0,0,0,0,0) v n en"1L
1

II (0,k1,0,0,0,0) v k1 ek1R 1
III (n,0,0,1,0,0) v

vY
vYL

n + 1 en"3L eY eYL
3

2
n" 1

2

% &
n" n" 1

2

% &
" 1

' (a

IV (n,k1,0,1,0,0) v
vY
vYL

n + k1 + 1 en"1L ek1"1R eY eYLeYR
2 2(k1 + 1)a

V (n,0,0,0,1,0) v
vX
vXL

n + 1 en"4L eX eXL
4 nðn" 1Þðn" 2Þ

24
n" even

ðn" 1Þðnþ 1Þðn" 3Þ
24

n" odd

VI (n,k1,0,0,1,0) v
vX
vXL

n + k1 + 1 en"2L ek1"1R eX eXL
2eXR

2 (n " 1)(k1 + 1)

VII (0,k1,k2,0,1,0) v
vX
vXR

k1 + k2 + 1 ek1"1R ek2"1R eX eXR
4 k1 + k2 + 1

VIII (n,0,0,0,0,1) v
vZ
vZL

n + 1 en"2L eZeZL
2 n " 1

IX (0,k1,0,0,0,1) v
vZ
vZR

k1 + 1 ek1"1R eZeZR2 k1 + 1

a Here, the factor 2 reflects the possibility of Y defect to have a charge 1 or "1; [#] means the integer part of the argument.
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where ~mk is the magnetic moment of particle k; ~̂rij ¼ rij
!
~rij
"" "". All

the particle magnetic moments have the same magnitude m.
In the text, kB is the Boltzmann constant, b = 1/T, lengths is

measured in units of the particle diameter d and energy in units
of m2/d3. Therefore, temperature is measured in units of kBd3/m2.

2.2 Theoretical approach

Our detailed analysis of branching in ref. 56 revealed the possibility
to split all possible branching points in the system into three main
classes only (see Fig. 1), using the number of ways out w (in the
following ‘‘valency’’) as a label. Looking at Fig. 1 one can see that
particles of type Z have w = 2, particles of type Y are characterised by
w = 3 and particles of type X have w = 4. Each of these defect particles
also has a ‘‘charge’’ due to the possible dipolar orientations of defect
neighbours: Y ones have charge 1 or "1, since if two dipoles enter
the Y particle, then one necessarily exits (charge "1); conversely, if
two dipoles exit, one enters (charge +1). By contrast, the charge of Z
and X particles is always zero, since if one or two dipoles enter, one
or two others always exit from the defect particle.

In our model, defect particles do not interact with each other;
rather they interact with ‘‘regular’’ particles. The latter can form
chains and rings and as such connect defect particles. One can also
think of our system as being composed by four different types of
particles: one type can only form chains and rings, the other type (Z)
can attach to a ring or to a chain, but cannot connect any of the two
to some other cluster, whereas the other two (Y and X) connect chains
and rings, effectively serving as cross-linkers with a fixed valency.

In Fig. 1 we showed the nine classes of structures that contain
up to one defect particle. The free energy (F) per unit volume of
this system can be obtained by summing up the free energies
of these classes. In the following, we denote their equilibrium
concentrations as g(#).

F ¼ kBT
X

i

K ~i
#
Þg ~i
#
Þ ln

g ~i
#
Þv ~i
#
Þ

eQ ~i
# $

 !

: (3)

Here, kBT is the thermal energy. Unlike the monodisperse case,51

the summation here cannot be carried over the number of particles

in a cluster, but one has to introduce a vector
-

i containing the
information about not only the size of the cluster but also about
its topology, i.e.

-

i = (n, k1, k2, mY, mX, mz)

where n Z 0 is the amount of regular particles in chain
segments; (kj Z 4) or (kj = 0), j = 1, 2 are the numbers of regular
particles in ring segments; mY, mX and mZ are the numbers of
type Y, X and Z defects present in the cluster (in the current
study

P
l¼X;Y ;Z

ml ¼ 0 for primary structures and 1 for the branches).

In addition, the partition function of each class also depends

on
-

i: Q(
-

i). Finally, v(
-

i) is a characteristic volume, which allows us
to express the partition functions in a simple factorised way

(see, Table 1). The parameter K(
-

i) is a combinatorial factor,
representing the number of entropically distinguishable

clusters from the same class, having the same
-

i and with the

same partition function Q(
-

i). The free energy can thus be
computed by minimising the functional (3) taking into account
the mass-balance condition:

X

i

K ~i
#
ÞN ~i
#
Þgð~i Þ ¼ f

v
: (4)

This condition constraints the total number of particles in a unit
volume (f/v, f being regular particle volume fraction, v standing for
particle volume). Note that the total number of regular particles in a
cluster of class i is given by N(i) = n + k1 + k2 + mYsY + mXsX + mZsZ,
where a defect particle depending on its type contains sY, sX or sZ

regular particles. These parameters are used to simplify the descrip-
tion of the cluster formation. As shown in ref. 56, the number of
particles in the defects can vary from one to four, however, the actual
internal structure is irrelevant. Thus, we can unify the treatment and
limit the number of defect particle types.

Table 1 Characteristics of aggregate classes

Class ~i v(~i ) N(~i ) Q(~i ) K(~i )

I (n,0,0,0,0,0) v n en"1L
1

II (0,k1,0,0,0,0) v k1 ek1R 1
III (n,0,0,1,0,0) v

vY
vYL

n + 1 en"3L eY eYL
3

2
n" 1

2

% &
n" n" 1

2

% &
" 1

' (a

IV (n,k1,0,1,0,0) v
vY
vYL

n + k1 + 1 en"1L ek1"1R eY eYLeYR
2 2(k1 + 1)a

V (n,0,0,0,1,0) v
vX
vXL

n + 1 en"4L eX eXL
4 nðn" 1Þðn" 2Þ

24
n" even

ðn" 1Þðnþ 1Þðn" 3Þ
24

n" odd

VI (n,k1,0,0,1,0) v
vX
vXL

n + k1 + 1 en"2L ek1"1R eX eXL
2eXR

2 (n " 1)(k1 + 1)

VII (0,k1,k2,0,1,0) v
vX
vXR

k1 + k2 + 1 ek1"1R ek2"1R eX eXR
4 k1 + k2 + 1

VIII (n,0,0,0,0,1) v
vZ
vZL

n + 1 en"2L eZeZL
2 n " 1

IX (0,k1,0,0,0,1) v
vZ
vZR

k1 + 1 ek1"1R eZeZR2 k1 + 1

a Here, the factor 2 reflects the possibility of Y defect to have a charge 1 or "1; [#] means the integer part of the argument.
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important to understand how the initial stage of branching
occurs, which structures are more probable at low temperatures
and what are the main tendencies in branching for different particle
concentrations. In other words, we aim at understanding the second
step (the first being the formation of primary structures, namely
chains and rings) of the hierarchical self-assembly, thus elucidating
the thermodynamics of the aggregation of primarily formed chains
and rings into small branched clusters.

2.3 Computer simulations

We carry out Monte Carlo simulations in the canonical ensemble
of N = 5000 dipolar hard spheres at different temperatures and
concentrations j = N/V { 1, where V is the volume of the
simulation box. We simulate down to T* = 0.125 by implementing
ad-hoc biased Monte Carlo moves.44,59 For further details on the
simulation approach, see ref. 44. We partition particles into
clusters by employing a mixed distance/energy criterion: two
particles are bonded if their pair-interaction energy is negative and
their relative distance is smaller than rb = 1.3,44 which corresponds
to the first minimum of the radial distribution function. Clusters
are then classified according to these definitions:
! a structure containing two single-bonded particles connected

by particles having two neighbours is labelled as a chain;
! a ring is a cluster containing only particles having two

neighbours;
! any other kind of aggregate is a branched cluster.

3 Results and discussion
The main advantage of the combined approach proposed here is
that we can not only scrutinise the topologies of self-assembled
magnetic nanoparticle clusters and their distributions at various
concentrations and temperatures, but we can also directly follow
the hierarchical self-assembly in these systems and estimate the
thermodynamic contribution of each cluster type. In order to
obtain a clear understanding of the concentration and tempera-
ture influence on the self-assembly in magnetic nanocolloids
it is convenient to look at the fractions of particles in various
clusters. In the following, we use dimensionless units for
temperature (T*) and nanoparticle concentration (r*), as defined
in Model and methods.

3.1 Structural transitions

Fig. 4 shows the fraction of particles which are part of chains,
rings or branched clusters. At high temperature, when the
thermal fluctuations are strong enough to compete with mag-
netic dipole–dipole interparticle interactions, the majority of
nanoparticles are connected in chains of various lengths.† If
the concentration of nanoparticles is small and the tempera-
ture decreases, the chains increase in length and eventually the
energetic gain of closing into rings becomes large enough for a
structural transition to occur (Fig. 4 upper left). Further cooling
the system drives the formation of more complex structures,
even though their fraction never exceeds that of rings.

A different scenario takes place at large nanoparticle concen-
tration. In this case (Fig. 4 upper right, lower left and right), the
environment becomes too crowded for ideal rings to dominate
on cooling, and defect structures become increasingly relevant.
The temperature of this structural transition grows slowly
with growing nanoparticle concentration. We stress that our
assumption that clusters can contain up to one defect is valid in
a rather broad range of concentrations, as demonstrated by the
good agreement between theoretical predictions and simula-
tion results. However, for the highest concentration considered
here (Fig. 4 lower right), the one-defect limitation becomes too
strong since multiple-defect structures start to appear and the
agreement between theoretical and numerical results degrades.
It means that the structures considered here are the precursors
to the next hierarchical level of self-assembly in magnetic
nanocolloids, namely the aggregation of single-defect clusters
into complex networks.

3.2 Cluster distribution

Once it is clear that the high-T defect-free clusters are replaced by
more complex structures upon cooling, the composition of these
defect structures becomes of primary importance. Our theore-
tical approach allows us to scrutinise all possible transitions in
detail. In order to illustrate the competition between different
defect types, we show the temperature and concentration depen-
dence of the fractions of particles in the various clusters in Fig. 5.

At high temperature, the overwhelming majority of particles
is aggregated in chains, regardless of the concentration. As soon

Fig. 4 Fractions of chains, rings and defect structures for systems with
different nanoparticle concentrations (r*) versus the dimensionless tem-
perature (T*). The concentration grows from the left to the right and from
the top to the bottom. In all four plots the same notations are used: solid
lines are theoretical predictions, symbols denote the results of Monte Carlo
Simulations. Simulation data for the fraction of chains is plotted with
squares; for that of rings we use triangles; the fraction of all possible defect
structures we visualise with rhombuses. When r* = 0.0005, at high T* the
only clusters are chains, on cooling these chains close in rings; the fraction
of nanoparticles in defect structures is very low even at very low tempera-
ture. For higher values of r*, the order of structural transitions is different,
and the defect-free chains are replaced by defect structures on cooling. For
r* = 0.056 the fraction of defect-free rings is basically negligible.

† We consider single particles to be chains of unit length.
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as the temperature decreases and the concentration grows, the first
defect structures appear: chains begin to develop internal defects.
As the system is further cooled down, Y structures first start to
emerge and then slowly disappear in favour of X-structures. At the
same time, rings with internal defects and tennis-racket-like struc-
tures (IV) are clearly overtaken by rings with two chain tails. If we
cool the system further down, basically all defect-cluster fractions
exhibit a clear maximum and start rapidly decreasing. For low
concentrations, the majority of magnetic nanoparticles is aggre-
gated in rings. For higher concentrations, though, the fraction of
particles in rings has a maximum, signalling a transition towards
the formation of higher-order defect clusters such as those in
the VII class, i.e. double rings. These double rings thus form at
temperatures lower than single rings, but at relatively high nano-
particle concentration they clearly become the dominant class.
Another interesting aspect shown by Fig. 5 is that the fractions of
chain-only defects decrease faster on cooling than those with at
least one ring segment. This is a clear reminiscence of the low-
concentration structural transitions on cooling, where the complete
redistribution from chains into rings is observed in the same
temperature range.51

3.3 Thermodynamics

Next we investigate the effect of the observed structural transitions
on the thermodynamics of the magnetic nanoparticle systems.

We start by considering how temperature and particle concen-
tration affect the internal energy per particle, shown in Fig. 6.

Several conclusions can be drawn when looking at Fig. 6. At
any concentration the internal energy has an inflection point,
which generates a maximum in the T dependence of the constant
volume specific heat CV.60 The position of the maximum in CV,
as shown in the inset, shifts towards low temperatures as the
concentration decreases. Independently from concentration, there
is only one specific heat maximum, whose position is in close
correlation with the temperature of the first structural transition,
be that chain-ring or chain-defect transition (compare to Fig. 4).

Taking advantage of the theoretical approach, one can com-
pute the free energy and estimate its change across the various
structural transitions. First we estimate the thermodynamic
driving force which leads to the ring formation by calculating
the free energy difference between a system composed by only
chains and a system with chains and rings. At low concentra-
tions, the possibility of forming rings drives to a dramatic
decrease of the free energy and the contribution of rings to the
system free energy becomes dominant at low temperature. These
results are plotted with dashed lines in Fig. 7. For denser
systems, though, the free energy gain due to ring formation is
marginal. As a second step, we consider the free energy differ-
ence between a system composed only by chains and rings and a
system composed of chains, rings and defects. The resulting
driving force for branching is plotted with solid lines in the same
figure (Fig. 7). The results show that, indeed, there is a signifi-
cant driving force for branching, but only at intermediate and
high densities in the studied range of temperature. This result
confirms that the loss in the translational entropy of primary
clusters on branching becomes less-and-less relevant with

Fig. 5 Class struggle: colour maps for the fraction of particles in various
cluster classes as functions of dimensionless nanoparticle concentration
and temperature. The colour-code is the same for each plot and is
provided on the right: the brighter the colour is, the higher the fraction.
The classes shown along the main diagonal (I, II, VII) do not exhibit any
maxima in the range of studied parameters, whereas all the other struc-
tures have high fractions in well-defined T* ! r* regions. In this figure one
can clearly follow the hierarchical nature of the self-assembly in the
systems under study. For example, the intracluster defects (VIII, IX) start
to emerge with decreasing T*, but then quickly get replaced by more
complex aggregates (III, IV, V, VI). Note that all these transitions are caused
by the magnetic dipole–dipole interaction and entropy competition,
which becomes more and more intricate.

Fig. 6 Internal energy U* as a function of T*. Simulation results for
various concentrations are provided in symbols (see, legend). Theoretical
solid lines agree well with simulation results, whereas the dashed curves,
which show the internal energy of the system in which only chains can
form, strongly deviate. The internal energy has a prefactor, which is set to
unity in this plot: vd3/m2V, where v and V are the volumes of the particle
and the system respectively, m is the value of the nanoparticle (diameter d)
dipole moment. In the inset the temperature of the specific heat maxima
Tm, i.e. the positions of the internal energy inflection points, is plotted as a
function of the nanoparticle concentration.
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