Soft self-assembled nanoparticles with temperature-dependent properties

Lorenzo Rovigatti, Barbara Capone and Christos N. Likos

University of Vienna (Austria)

Roma 22 September 2015

Soft matter materials can be engineered to a high degree

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as "large atoms"...

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as "large atoms"... or molecules!

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as "large atoms"... or molecules!
- Limited valence → open structures

Hard "patchy" colloids are difficult to synthesise

¹Y. Wang et al., Nature (2012)

Hard "patchy" colloids are difficult to synthesise

²F. Luet al., Nat. Commun. (2015)

- Hard "patchy" colloids are difficult to synthesise
- A different approach: self-assembling (bio)polymers

- Hard "patchy" colloids are difficult to synthesise
- A different approach: self-assembling (bio)polymers
- New challenges (and opportunities): intrinsic softness

³LR et al., ACS Nano (2014)

The recipe

1. Take f diblock co-polymers (attractive-to-repulsive ratio α)

The recipe

- 1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
- 2. Graft them on a central anchoring point ($R \ll R_g$)

The recipe

- 1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
- 2. Graft them on a central anchoring point ($R \ll R_g$)

Experimentally viable (e.g. with zwitterionic end groups)

¹M. Pitsikalis et al., J. Chem. Phys. (1996)

- ²D. Vlassopoulos *et al., J. Chem. Phys.* (1999)
- ³D. Vlassopoulos *et al.*, *Macromol.* (2000)
- ⁴X. Zhang et al., Macromol. (2000)

4/9

The recipe

- 1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
- 2. Graft them on a central anchoring point ($R \ll R_g$)

- Experimentally viable (e.g. with zwitterionic end groups)
- Simulations show formation of ordered and disordered phases

⁵F. Lo Verso *et al.*, *Phys. Rev. Lett.* (2006)
⁶B. Capone *et al.*, *Phys. Rev. Lett.* (2012)
⁷C. Koch *et al.*, *Soft Matter* (2013)
4 / 9

The role of the temperature

T controls the attraction between end monomers

The role of the temperature

- T controls the attraction between end monomers
- At low T "patches" form

The role of the temperature

- T controls the attraction between end monomers
- At low T "patches" form
- Patch number and size depend on f , α and T

Tuning the flexibility

TSP's are inherently floppy

Angular flexibility

Radial flexibility

Tuning the flexibility

- TSP's are inherently floppy
- f, α and T control flexibility

Tuning the flexibility

- TSP's are inherently floppy
- f, α and T control flexibility
- Same patch geometry, different flexibility → materials with similar structures, different mechanics

In the bulk

In the bulk

TSP's self-assemble into soft patchy particles¹

¹LR et al., Nanoscale (2015)

- TSP's self-assemble into soft patchy particles¹
- Their self-assembly can be finely controlled

¹LR et al., Nanoscale (2015)

- TSP's self-assemble into soft patchy particles¹
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk

- TSP's self-assemble into soft patchy particles¹
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk
- Next step: re-entrant gels²

²S. Roldan-Vargas *et al., Sci. Rep.* (2013)

- TSP's self-assemble into soft patchy particles¹
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk
- Next step: re-entrant gels²

Thanks for your attention!