Soft self-assembled nanoparticles with temperature-dependent properties

Lorenzo Rovigatti, Barbara Capone and Christos N. Likos

University of Vienna (Austria)

Roma
22 September 2015
Valence-limited building blocks

- Soft matter materials can be engineered to a high degree
Valence-limited building blocks

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as “large atoms”...

Colloids as Big Atoms
Wilson Poon
Science 304, 830 (2004);
DOI: 10.1126/science.1097964
Valence-limited building blocks

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as “large atoms”... or molecules!
Valence-limited building blocks

- Soft matter materials can be engineered to a high degree
- Colloids can be seen as “large atoms”... or molecules!
- Limited valence → open structures
A hierarchical self-assembly

- *Hard “patchy” colloids are difficult to synthesise*

A hierarchical self-assembly

- Hard “patchy” colloids are difficult to synthesise

A hierarchical self-assembly

- Hard “patchy” colloids are difficult to synthesise
- A different approach: self-assembling (bio)polymers
A hierarchical self-assembly

- Hard “patchy” colloids are difficult to synthesise
- A different approach: self-assembling (bio)polymers
- New challenges (and opportunities): intrinsic softness

3LR et al., ACS Nano (2014)
Telechelic star polymers

The recipe

1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
Telechelic star polymers

The recipe

1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
2. Graft them on a central anchoring point ($R \ll R_g$)
Telechelic star polymers

The recipe

1. Take f diblock co-polymers (attractive-to-repulsive ratio α)
2. Graft them on a central anchoring point ($R \ll R_g$)

- Experimentally viable (e.g. with zwitterionic end groups)

Telechelic star polymers

The recipe

1. Take \(f \) diblock co-polymers (attractive-to-repulsive ratio \(\alpha \))
2. Graft them on a central anchoring point (\(R \ll R_g \))

- Experimentally viable (e.g. with zwitterionic end groups)
- Simulations show formation of ordered and disordered phases

The role of the temperature

- T controls the attraction between end monomers

Cooling process
The role of the temperature

- T controls the attraction between end monomers
- At low T “patches” form
The role of the temperature

- T controls the attraction between end monomers
- At low T “patches” form
- Patch number and size depend on f, α and T

![Graph showing the number of patches versus λ for $\alpha = 0.3$ and $\alpha = 0.7$](image-url)
Tuning the flexibility

- TSP’s are inherently floppy

Angular flexibility

Radial flexibility
Tuning the flexibility

- TSP’s are inherently floppy
- f, α and T control flexibility
Tuning the flexibility

- TSP’s are inherently floppy
- f, α and T control flexibility
- Same patch geometry, different flexibility \rightarrow materials with similar structures, different mechanics
In the bulk
In the bulk

![Graph showing the number of patches against cooling parameter \(\lambda \). The graph compares the single star (orange circles) and bulk (blue squares) scenarios.](image)
Outlook and conclusions

- TSP’s self-assemble into soft patchy particles\(^1\)

\(^1\)LR et al., Nanoscale (2015)
Outlook and conclusions

- TSP’s self-assemble into soft patchy particles\(^1\)
- Their self-assembly can be finely controlled

\(^1\)LR et al., *Nanoscale* (2015)
Outlook and conclusions

- TSP’s self-assemble into soft patchy particles\(^1\)
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk

\[\frac{8}{9}\]
Outlook and conclusions

- TSP’s self-assemble into soft patchy particles\(^1\)
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk
- Next step: re-entrant gels\(^2\)

Outlook and conclusions

- TSP’s self-assemble into soft patchy particles\(^1\)
- Their self-assembly can be finely controlled
- Single-star properties are retained in the bulk
- Next step: re-entrant gels\(^2\)

Thanks for your attention!